We consider the weak convergence of the Euler-Maruyama approximation for Schr\"odinger-F\"ollmer diffusions, which are solutions of Schr\"odinger bridge problems and can be used for sampling from given distributions. We show that the distribution of the terminal random variable of the time-discretized process weakly converges to the target one under mild regularity conditions.
In this work we study the numerical approximation of a class of ergodic Backward Stochastic Differential Equations. These equations are formulated in an infinite horizon framework and provide a probabilistic representation for elliptic Partial Differential Equations of ergodic type. In order to build our numerical scheme, we put forward a new representation of the PDE solution by using a classical probabilistic representation of the gradient. Then, based on this representation, we propose a fully implementable numerical scheme using a Picard iteration procedure, a grid space discretization and a Monte-Carlo approximation. Up to a limiting technical condition that guarantee the contraction of the Picard procedure, we obtain an upper bound for the numerical error. We also provide some numerical experiments that show the efficiency of this approach for small dimensions.
A profound gap persists between artificial intelligence (AI) and clinical practice in medicine, primarily due to the lack of rigorous and cost-effective evaluation methodologies. State-of-the-art and state-of-the-practice AI model evaluations are limited to laboratory studies on medical datasets or direct clinical trials with no or solely patient-centered controls. Moreover, the crucial role of clinicians in collaborating with AI, pivotal for determining its impact on clinical practice, is often overlooked. For the first time, we emphasize the critical necessity for rigorous and cost-effective evaluation methodologies for AI models in clinical practice, featuring patient/clinician-centered (dual-centered) AI randomized controlled trials (DC-AI RCTs) and virtual clinician-based in-silico trials (VC-MedAI) as an effective proxy for DC-AI RCTs. Leveraging 7500 diagnosis records from two-phase inaugural DC-AI RCTs across 14 medical centers with 125 clinicians, our results demonstrate the necessity of DC-AI RCTs and the effectiveness of VC-MedAI. Notably, VC-MedAI performs comparably to human clinicians, replicating insights and conclusions from prospective DC-AI RCTs. We envision DC-AI RCTs and VC-MedAI as pivotal advancements, presenting innovative and transformative evaluation methodologies for AI models in clinical practice, offering a preclinical-like setting mirroring conventional medicine, and reshaping development paradigms in a cost-effective and fast-iterative manner. Chinese Clinical Trial Registration: ChiCTR2400086816.
Since the work of Polyanskiy, Poor and Verd\'u on the finite blocklength performance of capacity-achieving codes for discrete memoryless channels, many papers have attempted to find further results for more practically relevant channels. However, it seems that the complexity of computing capacity-achieving codes has not been investigated until now. We study this question for the simplest non-trivial Gaussian channels, i.e., the additive colored Gaussian noise channel. To assess the computational complexity, we consider the classes $\mathrm{FP}_1$ and $\#\mathrm{P}_1$. $\mathrm{FP}_1$ includes functions computable by a deterministic Turing machine in polynomial time, whereas $\#\mathrm{P}_1$ encompasses functions that count the number of solutions verifiable in polynomial time. It is widely assumed that $\mathrm{FP}_1\neq\#\mathrm{P}_1$. It is of interest to determine the conditions under which, for a given $M \in \mathbb{N}$, where $M$ describes the precision of the deviation of $C(P,N)$, for a certain blocklength $n_M$ and a decoding error $\epsilon > 0$ with $\epsilon\in\mathbb{Q}$, the following holds: $R_{n_M}(\epsilon)>C(P,N)-\frac{1}{2^M}$. It is shown that there is a polynomial-time computable $N_*$ such that for sufficiently large $P_*\in\mathbb{Q}$, the sequences $\{R_{n_M}(\epsilon)\}_{{n_M}\in\mathbb{N}}$, where each $R_{n_M}(\epsilon)$ satisfies the previous condition, cannot be computed in polynomial time if $\mathrm{FP}_1\neq\#\mathrm{P}_1$. Hence, the complexity of computing the sequence $\{R_{n_M}(\epsilon)\}_{n_M\in\mathbb{N}}$ grows faster than any polynomial as $M$ increases. Consequently, it is shown that either the sequence of achievable rates $\{R_{n_M}(\epsilon)\}_{n_M\in\mathbb{N}}$ as a function of the blocklength, or the sequence of blocklengths $\{n_M\}_{M\in\mathbb{N}}$ corresponding to the achievable rates, is not a polynomial-time computable sequence.
We consider the motion of incompressible viscous fluid in a rectangle, imposing the periodicity condition in one direction and the no-slip boundary condition in the other. Assuming that the flow is subject to an external random force, white in time and regular in space, we construct an estimator for the viscosity using only observations of the enstrophy. The goal of the paper is to prove that the estimator is strongly consistent and asymptotically normal. The proof of consistency is based on the explicit formula for the estimator and some bounds for trajectories, while that of asymptotic normality uses in addition mixing properties of the Navier-Stokes flow.
Low-resource extractive text summarization is a vital but heavily underexplored area of research. Prior literature either focuses on abstractive text summarization or prompts a large language model (LLM) like GPT-3 directly to generate summaries. In this work, we propose MixSumm for low-resource extractive text summarization. Specifically, MixSumm prompts an open-source LLM, LLaMA-3-70b, to generate documents that mix information from multiple topics as opposed to generating documents without mixup, and then trains a summarization model on the generated dataset. We use ROUGE scores and L-Eval, a reference-free LLaMA-3-based evaluation method to measure the quality of generated summaries. We conduct extensive experiments on a challenging text summarization benchmark comprising the TweetSumm, WikiHow, and ArXiv/PubMed datasets and show that our LLM-based data augmentation framework outperforms recent prompt-based approaches for low-resource extractive summarization. Additionally, our results also demonstrate effective knowledge distillation from LLaMA-3-70b to a small BERT-based extractive summarizer.
In the finite difference approximation of the fractional Laplacian the stiffness matrix is typically dense and needs to be approximated numerically. The effect of the accuracy in approximating the stiffness matrix on the accuracy in the whole computation is analyzed and shown to be significant. Four such approximations are discussed. While they are shown to work well with the recently developed grid-over finite difference method (GoFD) for the numerical solution of boundary value problems of the fractional Laplacian, they differ in accuracy, economics to compute, performance of preconditioning, and asymptotic decay away from the diagonal line. In addition, two preconditioners based on sparse and circulant matrices are discussed for the iterative solution of linear systems associated with the stiffness matrix. Numerical results in two and three dimensions are presented.
Graph Neural Networks (GNNs), especially message-passing-based models, have become prominent in top-k recommendation tasks, outperforming matrix factorization models due to their ability to efficiently aggregate information from a broader context. Although GNNs are evaluated with ranking-based metrics, e.g NDCG@k and Recall@k, they remain largely trained with proxy losses, e.g the BPR loss. In this work we explore the use of ranking loss functions to directly optimize the evaluation metrics, an area not extensively investigated in the GNN community for collaborative filtering. We take advantage of smooth approximations of the rank to facilitate end-to-end training of GNNs and propose a Personalized PageRank-based negative sampling strategy tailored for ranking loss functions. Moreover, we extend the evaluation of GNN models for top-k recommendation tasks with an inductive user-centric protocol, providing a more accurate reflection of real-world applications. Our proposed method significantly outperforms the standard BPR loss and more advanced losses across four datasets and four recent GNN architectures while also exhibiting faster training. Demonstrating the potential of ranking loss functions in improving GNN training for collaborative filtering tasks.
The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.