亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large-scale ride-hailing systems often combine real-time routing at the individual request level with a macroscopic Model Predictive Control (MPC) optimization for dynamic pricing and vehicle relocation. The MPC relies on a demand forecast and optimizes over a longer time horizon to compensate for the myopic nature of the routing optimization. However, the longer horizon increases computational complexity and forces the MPC to operate at coarser spatial-temporal granularity, degrading the quality of its decisions. This paper addresses these computational challenges by learning the MPC optimization. The resulting machine-learning model then serves as the optimization proxy and predicts its optimal solutions. This makes it possible to use the MPC at higher spatial-temporal fidelity, since the optimizations can be solved and learned offline. Experimental results show that the proposed approach improves quality of service on challenging instances from the New York City dataset.

相關內容

In this paper, a human-like driving and decision-making framework is designed for autonomous vehicles (AVs), which aims to make AVs better integrate into the transportation ecology of human driving and eliminate the misunderstanding and incompatibility of human drivers to autonomous driving. Based on the analysis of the INTERACTION dataset, a driving aggressiveness estimation model is established with the fuzzy inference approach. Then, a human-like driving model is designed, which integrates the brain emotional learning circuit model (BELCM) with the two-point preview model. In the human-like lane-change decision-making algorithm, the cost function is designed comprehensively considering driving safety and travel efficiency. Based on the cost function and multi-constraint, the dynamic game algorithm is applied to modelling the interaction and decision making between AV and human driver. Additionally, to guarantee the lane-change safety of AVs, an artificial potential field model is built for collision risk assessment. Finally, based on the driving simulator, the proposed algorithm is evaluated with the human-in-the-loop experiments.

Traffic signal control is an important problem in urban mobility with a significant potential of economic and environmental impact. While there is a growing interest in Reinforcement Learning (RL) for traffic control, the work so far has focussed on learning through interactions which, in practice, is costly. Instead, real experience data on traffic is available and could be exploited at minimal costs. Recent progress in offline or batch RL has enabled just that. Model-based offline RL methods, in particular, have been shown to generalize to the experience data much better than others. We build a model-based learning framework, A-DAC, which infers a Markov Decision Process (MDP) from dataset with pessimistic costs built in to deal with data uncertainties. The costs are modeled through an adaptive shaping of rewards in the MDP which provides better regularization of data compared to the prior related work. A-DAC is evaluated on a complex signalized roundabout using multiple datasets varying in size and in batch collection policy. The evaluation results show that it is possible to build high performance control policies in a data efficient manner using simplistic batch collection policies.

We consider the joint design and control of discrete-time stochastic dynamical systems over a finite time horizon. We formulate the problem as a multi-step optimization problem under uncertainty seeking to identify a system design and a control policy that jointly maximize the expected sum of rewards collected over the time horizon considered. The transition function, the reward function and the policy are all parametrized, assumed known and differentiable with respect to their parameters. We then introduce a deep reinforcement learning algorithm combining policy gradient methods with model-based optimization techniques to solve this problem. In essence, our algorithm iteratively approximates the gradient of the expected return via Monte-Carlo sampling and automatic differentiation and takes projected gradient ascent steps in the space of environment and policy parameters. This algorithm is referred to as Direct Environment and Policy Search (DEPS). We assess the performance of our algorithm in three environments concerned with the design and control of a mass-spring-damper system, a small-scale off-grid power system and a drone, respectively. In addition, our algorithm is benchmarked against a state-of-the-art deep reinforcement learning algorithm used to tackle joint design and control problems. We show that DEPS performs at least as well or better in all three environments, consistently yielding solutions with higher returns in fewer iterations. Finally, solutions produced by our algorithm are also compared with solutions produced by an algorithm that does not jointly optimize environment and policy parameters, highlighting the fact that higher returns can be achieved when joint optimization is performed.

The ability to recover from an unexpected external perturbation is a fundamental motor skill in bipedal locomotion. An effective response includes the ability to not just recover balance and maintain stability but also to fall in a safe manner when balance recovery is physically infeasible. For robots associated with bipedal locomotion, such as humanoid robots and assistive robotic devices that aid humans in walking, designing controllers which can provide this stability and safety can prevent damage to robots or prevent injury related medical costs. This is a challenging task because it involves generating highly dynamic motion for a high-dimensional, non-linear and under-actuated system with contacts. Despite prior advancements in using model-based and optimization methods, challenges such as requirement of extensive domain knowledge, relatively large computational time and limited robustness to changes in dynamics still make this an open problem. In this thesis, to address these issues we develop learning-based algorithms capable of synthesizing push recovery control policies for two different kinds of robots : Humanoid robots and assistive robotic devices that assist in bipedal locomotion. Our work can be branched into two closely related directions : 1) Learning safe falling and fall prevention strategies for humanoid robots and 2) Learning fall prevention strategies for humans using a robotic assistive devices. To achieve this, we introduce a set of Deep Reinforcement Learning (DRL) algorithms to learn control policies that improve safety while using these robots.

Real economies can be seen as a sequential imperfect-information game with many heterogeneous, interacting strategic agents of various agent types, such as consumers, firms, and governments. Dynamic general equilibrium models are common economic tools to model the economic activity, interactions, and outcomes in such systems. However, existing analytical and computational methods struggle to find explicit equilibria when all agents are strategic and interact, while joint learning is unstable and challenging. Amongst others, a key reason is that the actions of one economic agent may change the reward function of another agent, e.g., a consumer's expendable income changes when firms change prices or governments change taxes. We show that multi-agent deep reinforcement learning (RL) can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types, in economic simulations with many agents, through the use of structured learning curricula and efficient GPU-only simulation and training. Conceptually, our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing, that are commonly used for analytical tractability. Our GPU implementation enables training and analyzing economies with a large number of agents within reasonable time frames, e.g., training completes within a day. We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes. We validate the learned meta-game epsilon-Nash equilibria through approximate best-response analyses, show that RL policies align with economic intuitions, and that our approach is constructive, e.g., by explicitly learning a spectrum of meta-game epsilon-Nash equilibria in open RBC models.

Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day, providing great promises for improving transportation efficiency through the tasks of order dispatching and vehicle repositioning. Existing studies, however, usually consider the two tasks in simplified settings that hardly address the complex interactions between the two, the real-time fluctuations between supply and demand, and the necessary coordinations due to the large-scale nature of the problem. In this paper we propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks. At the center of the framework is a globally shared value function that is updated continuously using online experiences generated from real-time platform transactions. To improve the sample-efficiency and the robustness, we further propose a novel periodic ensemble method combining the fast online learning with a large-scale offline training scheme that leverages the abundant historical driver trajectory data. This allows the proposed framework to adapt quickly to the highly dynamic environment, to generalize robustly to recurrent patterns and to drive implicit coordinations among the population of managed vehicles. Extensive experiments based on real-world datasets show considerably improvements over other recently proposed methods on both tasks. Particularly, V1D3 outperforms the first prize winners of both dispatching and repositioning tracks in the KDD Cup 2020 RL competition, achieving state-of-the-art results on improving both total driver income and user experience related metrics.

We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.

Collecting training data from the physical world is usually time-consuming and even dangerous for fragile robots, and thus, recent advances in robot learning advocate the use of simulators as the training platform. Unfortunately, the reality gap between synthetic and real visual data prohibits direct migration of the models trained in virtual worlds to the real world. This paper proposes a modular architecture for tackling the virtual-to-real problem. The proposed architecture separates the learning model into a perception module and a control policy module, and uses semantic image segmentation as the meta representation for relating these two modules. The perception module translates the perceived RGB image to semantic image segmentation. The control policy module is implemented as a deep reinforcement learning agent, which performs actions based on the translated image segmentation. Our architecture is evaluated in an obstacle avoidance task and a target following task. Experimental results show that our architecture significantly outperforms all of the baseline methods in both virtual and real environments, and demonstrates a faster learning curve than them. We also present a detailed analysis for a variety of variant configurations, and validate the transferability of our modular architecture.

In this work, we present a hybrid learning method for training task-oriented dialogue systems through online user interactions. Popular methods for learning task-oriented dialogues include applying reinforcement learning with user feedback on supervised pre-training models. Efficiency of such learning method may suffer from the mismatch of dialogue state distribution between offline training and online interactive learning stages. To address this challenge, we propose a hybrid imitation and reinforcement learning method, with which a dialogue agent can effectively learn from its interaction with users by learning from human teaching and feedback. We design a neural network based task-oriented dialogue agent that can be optimized end-to-end with the proposed learning method. Experimental results show that our end-to-end dialogue agent can learn effectively from the mistake it makes via imitation learning from user teaching. Applying reinforcement learning with user feedback after the imitation learning stage further improves the agent's capability in successfully completing a task.

Although reinforcement learning methods can achieve impressive results in simulation, the real world presents two major challenges: generating samples is exceedingly expensive, and unexpected perturbations can cause proficient but narrowly-learned policies to fail at test time. In this work, we propose to learn how to quickly and effectively adapt online to new situations as well as to perturbations. To enable sample-efficient meta-learning, we consider learning online adaptation in the context of model-based reinforcement learning. Our approach trains a global model such that, when combined with recent data, the model can be be rapidly adapted to the local context. Our experiments demonstrate that our approach can enable simulated agents to adapt their behavior online to novel terrains, to a crippled leg, and in highly-dynamic environments.

北京阿比特科技有限公司