In this paper we construct high order numerical methods for solving third and fourth orders nonlinear functional differential equations (FDE). They are based on the discretization of iterative methods on continuous level with the use of the trapezoidal quadrature formulas with corrections. Depending on the number of terms in the corrections we obtain methods of $O(h^4)$ and $O(h^6)$ accuracy. Some numerical experiments demonstrate the validity of the obtained theoretical results. The approach used here for the third and fourth orders nonlinear functional differential equations can be applied to functional differential equations of any orders.
In this paper, we proposed a monotone block coordinate descent method for solving absolute value equation (AVE). Under appropriate conditions, we analyzed the global convergence of the algorithm and conduct numerical experiments to demonstrate its feasibility and effectiveness.
This paper addresses the inverse scattering problem for Maxwell's equations. We first show that a bianisotropic scatterer can be uniquely determined from multi-static far-field data through the factorization analysis of the far-field operator. Next, we investigate a modified version of the orthogonality sampling method, as proposed in \cite{Le2022}, for the numerical reconstruction of the scatterer. Finally, we apply this sampling method to invert unprocessed 3D experimental data obtained from the Fresnel Institute \cite{Geffrin2009}. Numerical examples with synthetic scattering data for bianisotropic targets are also presented to demonstrate the effectiveness of the method.
High-dimensional parabolic partial differential equations (PDEs) often involve large-scale Hessian matrices, which are computationally expensive for deep learning methods relying on automatic differentiation to compute derivatives. This work aims to address this issue. In the proposed method, the PDE is reformulated into a martingale formulation, which allows the computation of loss functions to be derivative-free and parallelized in time-space domain. Then, the martingale formulation is enforced using a Galerkin method via adversarial learning techniques, which eliminate the need of computing conditional expectations in the margtingale property. This method is further extended to solve Hamilton-Jacobi-Bellman (HJB) equations and the associated Stochastic optimal control problems, enabling the simultaneous solution of the value function and optimal feedback control in a derivative-free manner. Numerical results demonstrate the effectiveness and efficiency of the proposed method, capable of solving HJB equations accurately with dimensionality up to 10,000.
This study focuses on addressing the challenge of solving the reduced biquaternion equality constrained least squares (RBLSE) problem. We develop algebraic techniques to derive both complex and real solutions for the RBLSE problem by utilizing the complex and real forms of reduced biquaternion matrices. Additionally, we conduct a perturbation analysis for the RBLSE problem and establish an upper bound for the relative forward error of these solutions. Numerical examples are presented to illustrate the effectiveness of the proposed approaches and to verify the accuracy of the established upper bound for the relative forward errors.
We propose and analyse a boundary-preserving numerical scheme for the weak approximations of some stochastic partial differential equations (SPDEs) with bounded state-space. We impose regularity assumptions on the drift and diffusion coefficients only locally on the state-space. In particular, the drift and diffusion coefficients may be non-globally Lipschitz continuous and superlinearly growing. The scheme consists of a finite difference discretisation in space and a Lie--Trotter splitting followed by exact simulation and exact integration in time. We prove weak convergence of optimal order 1/4 for globally Lipschitz continuous test functions of the scheme by proving strong convergence towards a strong solution driven by a different noise process. Boundary-preservation is ensured by the use of Lie--Trotter time splitting followed by exact simulation and exact integration. Numerical experiments confirm the theoretical results and demonstrate the effectiveness of the proposed Lie--Trotter-Exact (LTE) scheme compared to existing methods for SPDEs.
In this paper, we focus on efficiently and flexibly simulating the Fokker-Planck equation associated with the Nonlinear Noisy Leaky Integrate-and-Fire (NNLIF) model, which reflects the dynamic behavior of neuron networks. We apply the Galerkin spectral method to discretize the spatial domain by constructing a variational formulation that satisfies complex boundary conditions. Moreover, the boundary conditions in the variational formulation include only zeroth-order terms, with first-order conditions being naturally incorporated. This allows the numerical scheme to be further extended to an excitatory-inhibitory population model with synaptic delays and refractory states. Additionally, we establish the consistency of the numerical scheme. Experimental results, including accuracy tests, blow-up events, and periodic oscillations, validate the properties of our proposed method.
The phenomenon of finite time blow-up in hydrodynamic partial differential equations is central in analysis and mathematical physics. While numerical studies have guided theoretical breakthroughs, it is challenging to determine if the observed computational results are genuine or mere numerical artifacts. Here we identify numerical signatures of blow-up. Our study is based on the complexified Euler equations in two dimensions, where instant blow-up is expected. Via a geometrically consistent spatiotemporal discretization, we perform several numerical experiments and verify their computational stability. We then identify a signature of blow-up based on the growth rates of the supremum norm of the vorticity with increasing spatial resolution. The study aims to be a guide for cross-checking the validity for future numerical experiments of suspected blow-up in equations where the analysis is not yet resolved.
Parameter inference is essential when interpreting observational data using mathematical models. Standard inference methods for differential equation models typically rely on obtaining repeated numerical solutions of the differential equation(s). Recent results have explored how numerical truncation error can have major, detrimental, and sometimes hidden impacts on likelihood-based inference by introducing false local maxima into the log-likelihood function. We present a straightforward approach for inference that eliminates the need for solving the underlying differential equations, thereby completely avoiding the impact of truncation error. Open-access Jupyter notebooks, available on GitHub, allow others to implement this method for a broad class of widely-used models to interpret biological data.
In this paper we obtain the Wedderburn-Artin decomposition of a semisimple group algebra associated to a direct product of finite groups. We also provide formulae for the number of all possible group codes, and their dimensions, that can be constructed in a group algebra. As particular cases, we present the complete algebraic description of the group algebra of any direct product of groups whose direct factors are cyclic, dihedral, or generalised quaternion groups. Finally, in the specific case of semisimple dihedral group algebras, we give a method to build quantum error-correcting codes, based on the CSS construction.
In this contribution we study the formal ability of a multi-resolution-times lattice Boltzmann scheme to approximate isothermal and thermal compressible Navier Stokes equations with a single particle distribution. More precisely, we consider a total of 12 classical square lattice Boltzmann schemes with prescribed sets of conserved and nonconserved moments. The question is to determine the algebraic expressions of the equilibrium functions for the nonconserved moments and the relaxation parameters associated to each scheme. We compare the fluid equations and the result of the Taylor expansion method at second order accuracy for bidimensional examples with a maximum of 17 velocities and three-dimensional schemes with at most 33 velocities. In some cases, it is not possible to fit exactly the physical model. For several examples, we adjust the Navier Stokes equations and propose nontrivial expressions for the equilibria.