亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Longform media such as movies have complex narrative structures, with events spanning a rich variety of ambient visual scenes. Domain specific challenges associated with visual scenes in movies include transitions, person coverage, and a wide array of real-life and fictional scenarios. Existing visual scene datasets in movies have limited taxonomies and don't consider the visual scene transition within movie clips. In this work, we address the problem of visual scene recognition in movies by first automatically curating a new and extensive movie-centric taxonomy of 179 scene labels derived from movie scripts and auxiliary web-based video datasets. Instead of manual annotations which can be expensive, we use CLIP to weakly label 1.12 million shots from 32K movie clips based on our proposed taxonomy. We provide baseline visual models trained on the weakly labeled dataset called MovieCLIP and evaluate them on an independent dataset verified by human raters. We show that leveraging features from models pretrained on MovieCLIP benefits downstream tasks such as multi-label scene and genre classification of web videos and movie trailers.

相關內容

分類學是分類的實踐和科學。Wikipedia類別說明了一種分類法,可以通過自動方式提取Wikipedia類別的完整分類法。截至2009年,已經證明,可以使用人工構建的分類法(例如像WordNet這樣的計算詞典的分類法)來改進和重組Wikipedia類別分類法。 從廣義上講,分類法還適用于除父子層次結構以外的關系方案,例如網絡結構。然后分類法可能包括有多父母的單身孩子,例如,“汽車”可能與父母雙方一起出現“車輛”和“鋼結構”;但是對某些人而言,這僅意味著“汽車”是幾種不同分類法的一部分。分類法也可能只是將事物組織成組,或者是按字母順序排列的列表;但是在這里,術語詞匯更合適。在知識管理中的當前用法中,分類法被認為比本體論窄,因為本體論應用了各種各樣的關系類型。 在數學上,分層分類法是給定對象集的分類樹結構。該結構的頂部是適用于所有對象的單個分類,即根節點。此根下的節點是更具體的分類,適用于總分類對象集的子集。推理的進展從一般到更具體。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Human Activity Recognition (HAR) using on-body devices identifies specific human actions in unconstrained environments. HAR is challenging due to the inter and intra-variance of human movements; moreover, annotated datasets from on-body devices are scarce. This problem is mainly due to the difficulty of data creation, i.e., recording, expensive annotation, and lack of standard definitions of human activities. Previous works demonstrated that transfer learning is a good strategy for addressing scenarios with scarce data. However, the scarcity of annotated on-body device datasets remains. This paper proposes using datasets intended for human-pose estimation as a source for transfer learning; specifically, it deploys sequences of annotated pixel coordinates of human joints from video datasets for HAR and human pose estimation. We pre-train a deep architecture on four benchmark video-based source datasets. Finally, an evaluation is carried out on three on-body device datasets improving HAR performance.

Climate change is threatening human health in unprecedented orders and many ways. These threats are expected to grow unless effective and evidence-based policies are developed and acted upon to minimize or eliminate them. Attaining such a task requires the highest degree of the flow of knowledge from science into policy. The multidisciplinary, location-specific, and vastness of published science makes it challenging to keep track of novel work in this area, as well as making the traditional knowledge synthesis methods inefficient in infusing science into policy. To this end, we consider developing multiple domain-specific language models (LMs) with different variations from Climate- and Health-related information, which can serve as a foundational step toward capturing available knowledge to enable solving different tasks, such as detecting similarities between climate- and health-related concepts, fact-checking, relation extraction, evidence of health effects to policy text generation, and more. To our knowledge, this is the first work that proposes developing multiple domain-specific language models for the considered domains. We will make the developed models, resources, and codebase available for the researchers.

Vision-language models (VLMs) such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what features the model uses to construct its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.

We introduce ViewNeRF, a Neural Radiance Field-based viewpoint estimation method that learns to predict category-level viewpoints directly from images during training. While NeRF is usually trained with ground-truth camera poses, multiple extensions have been proposed to reduce the need for this expensive supervision. Nonetheless, most of these methods still struggle in complex settings with large camera movements, and are restricted to single scenes, i.e. they cannot be trained on a collection of scenes depicting the same object category. To address these issues, our method uses an analysis by synthesis approach, combining a conditional NeRF with a viewpoint predictor and a scene encoder in order to produce self-supervised reconstructions for whole object categories. Rather than focusing on high fidelity reconstruction, we target efficient and accurate viewpoint prediction in complex scenarios, e.g. 360{\deg} rotation on real data. Our model shows competitive results on synthetic and real datasets, both for single scenes and multi-instance collections.

Most existing scene text detectors require large-scale training data which cannot scale well due to two major factors: 1) scene text images often have domain-specific distributions; 2) collecting large-scale annotated scene text images is laborious. We study domain adaptive scene text detection, a largely neglected yet very meaningful task that aims for optimal transfer of labelled scene text images while handling unlabelled images in various new domains. Specifically, we design SCAST, a subcategory-aware self-training technique that mitigates the network overfitting and noisy pseudo labels in domain adaptive scene text detection effectively. SCAST consists of two novel designs. For labelled source data, it introduces pseudo subcategories for both foreground texts and background stuff which helps train more generalizable source models with multi-class detection objectives. For unlabelled target data, it mitigates the network overfitting by co-regularizing the binary and subcategory classifiers trained in the source domain. Extensive experiments show that SCAST achieves superior detection performance consistently across multiple public benchmarks, and it also generalizes well to other domain adaptive detection tasks such as vehicle detection.

The success of deep neural networks requires both high annotation quality and massive data. However, the size and the quality of a dataset are usually a trade-off in practice, as data collection and cleaning are expensive and time-consuming. Therefore, automatic noisy label detection (NLD) techniques are critical to real-world applications, especially those using crowdsourcing datasets. As this is an under-explored topic in automatic speaker verification (ASV), we present a simple but effective solution to the task. First, we compare the effectiveness of various commonly used metric learning loss functions under different noise settings. Then, we propose two ranking-based NLD methods, inter-class inconsistency and intra-class inconsistency ranking. They leverage the inconsistent nature of noisy labels and show high detection precision even under a high level of noise. Our solution gives rise to both efficient and effective cleaning of large-scale speaker recognition datasets.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

The canonical approach to video-and-language learning (e.g., video question answering) dictates a neural model to learn from offline-extracted dense video features from vision models and text features from language models. These feature extractors are trained independently and usually on tasks different from the target domains, rendering these fixed features sub-optimal for downstream tasks. Moreover, due to the high computational overload of dense video features, it is often difficult (or infeasible) to plug feature extractors directly into existing approaches for easy finetuning. To provide a remedy to this dilemma, we propose a generic framework ClipBERT that enables affordable end-to-end learning for video-and-language tasks, by employing sparse sampling, where only a single or a few sparsely sampled short clips from a video are used at each training step. Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that ClipBERT outperforms (or is on par with) existing methods that exploit full-length videos, suggesting that end-to-end learning with just a few sparsely sampled clips is often more accurate than using densely extracted offline features from full-length videos, proving the proverbial less-is-more principle. Videos in the datasets are from considerably different domains and lengths, ranging from 3-second generic domain GIF videos to 180-second YouTube human activity videos, showing the generalization ability of our approach. Comprehensive ablation studies and thorough analyses are provided to dissect what factors lead to this success. Our code is publicly available at //github.com/jayleicn/ClipBERT

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

北京阿比特科技有限公司