We study the performance of a new block preconditioner for a class of $3\times3$ block saddle point problems which arise from finite element methods for solving time-dependent Maxwell equations and some other practical problems. We also estimate the lower and upper bounds of eigenvalues of the preconditioned matrix. \cred{Finally, we examine our new preconditioner to accelerate the convergence speed of the GMRES method which shows the effectiveness of the preconditioner.
Majority-SAT is the problem of determining whether an input $n$-variable formula in conjunctive normal form (CNF) has at least $2^{n-1}$ satisfying assignments. Majority-SAT and related problems have been studied extensively in various AI communities interested in the complexity of probabilistic planning and inference. Although Majority-SAT has been known to be PP-complete for over 40 years, the complexity of a natural variant has remained open: Majority-$k$SAT, where the input CNF formula is restricted to have clause width at most $k$. We prove that for every $k$, Majority-$k$SAT is in P. In fact, for any positive integer $k$ and rational $\rho \in (0,1)$ with bounded denominator, we give an algorithm that can determine whether a given $k$-CNF has at least $\rho \cdot 2^n$ satisfying assignments, in deterministic linear time (whereas the previous best-known algorithm ran in exponential time). Our algorithms have interesting positive implications for counting complexity and the complexity of inference, significantly reducing the known complexities of related problems such as E-MAJ-$k$SAT and MAJ-MAJ-$k$SAT. At the heart of our approach is an efficient method for solving threshold counting problems by extracting sunflowers found in the corresponding set system of a $k$-CNF. We also show that the tractability of Majority-$k$SAT is somewhat fragile. For the closely related GtMajority-SAT problem (where we ask whether a given formula has greater than $2^{n-1}$ satisfying assignments) which is known to be PP-complete, we show that GtMajority-$k$SAT is in P for $k\le 3$, but becomes NP-complete for $k\geq 4$. These results are counterintuitive, because the ``natural'' classifications of these problems would have been PP-completeness, and because there is a stark difference in the complexity of GtMajority-$k$SAT and Majority-$k$SAT for all $k\ge 4$.
We investigated the imaging performance of a fast convergent ordered-subsets algorithm with subiteration-dependent preconditioners (SDPs) for positron emission tomography (PET) image reconstruction. In particular, we considered the use of SDP with the block sequential regularized expectation maximization (BSREM) approach with the relative difference prior (RDP) regularizer due to its prior clinical adaptation by vendors. Because the RDP regularization promotes smoothness in the reconstructed image, the directions of the gradients in smooth areas more accurately point toward the objective function's minimizer than those in variable areas. Motivated by this observation, two SDPs have been designed to increase iteration step-sizes in the smooth areas and reduce iteration step-sizes in the variable areas relative to a conventional expectation maximization preconditioner. The momentum technique used for convergence acceleration can be viewed as a special case of SDP. We have proved the global convergence of SDP-BSREM algorithms by assuming certain characteristics of the preconditioner. By means of numerical experiments using both simulated and clinical PET data, we have shown that our SDP-BSREM substantially improved the convergence rate, as compared to conventional BSREM and a vendor's implementation as Q.Clear. Specifically, in numerical experiments with a synthetic brain phantom, both proposed algorithms outperformed the conventional BSREM by a factor of two, while in experiments with clinical whole-body patient PET data (with and without time-of-flight information), the SDP-BSREM algorithm converged 35\%-50\% percent faster than the commercial Q.Clear algorithm.
The unscented transform uses a weighted set of samples called sigma points to propagate the means and covariances of nonlinear transformations of random variables. However, unscented transforms developed using either the Gaussian assumption or a minimum set of sigma points typically fall short when the random variable is not Gaussian distributed and the nonlinearities are substantial. In this paper, we develop the generalized unscented transform (GenUT), which uses 2n+1 sigma points to accurately capture up to the diagonal components of the skewness and kurtosis tensors of most probability distributions. Constraints can be analytically enforced on the sigma points while guaranteeing at least second-order accuracy. The GenUT uses the same number of sigma points as the original unscented transform while also being applicable to non-Gaussian distributions, including the assimilation of observations in the modeling of infectious diseases such as coronavirus (SARS-CoV-2) causing COVID-19.
Let $G$ be an $n$-vertex graph, and $s,t$ vertices of $G$. We present an efficient algorithm which enumerates the set of minimal $st$-separators of $G$ in ascending order of cardinality, with a delay of $O(n^{3.5})$ per separator. In particular, we present an algorithm that lists, in ascending order of cardinality, all minimal separators with at most $k$ vertices. In that case, we show that the delay of the enumeration algorithm is $O(kn^{2.5})$ per separator. Our process is based on a new method that can decide, in polynomial time, whether the set of minimal separators under certain inclusion, exclusion, and cardinality constraints is empty.
A second order accurate, linear numerical method is analyzed for the Landau-Lifshitz equation with large damping parameters. This equation describes the dynamics of magnetization, with a non-convexity constraint of unit length of the magnetization. The numerical method is based on the second-order backward differentiation formula in time, combined with an implicit treatment of the linear diffusion term and explicit extrapolation for the nonlinear terms. Afterward, a projection step is applied to normalize the numerical solution at a point-wise level. This numerical scheme has shown extensive advantages in the practical computations for the physical model with large damping parameters, which comes from the fact that only a linear system with constant coefficients (independent of both time and the updated magnetization) needs to be solved at each time step, and has greatly improved the numerical efficiency. Meanwhile, a theoretical analysis for this linear numerical scheme has not been available. In this paper, we provide a rigorous error estimate of the numerical scheme, in the discrete $\ell^{\infty}(0,T; \ell^2) \cap \ell^2(0,T; H_h^1)$ norm, under suitable regularity assumptions and reasonable ratio between the time step-size and the spatial mesh-size. In particular, the projection operation is nonlinear, and a stability estimate for the projection step turns out to be highly challenging. Such a stability estimate is derived in details, which will play an essential role in the convergence analysis for the numerical scheme, if the damping parameter is greater than 3.
We introduce a framework for linear precoder design over a massive multiple-input multiple-output downlink system in the presence of nonlinear power amplifiers (PAs). By studying the spatial characteristics of the distortion, we demonstrate that conventional linear precoding techniques steer nonlinear distortions towards the users. We show that, by taking into account PA nonlinearity, one can design linear precoders that reduce, and in single-user scenarios, even completely remove the distortion transmitted in the direction of the users. This, however, is achieved at the price of a reduced array gain. To address this issue, we present precoder optimization algorithms that simultaneously take into account the effects of array gain, distortion, multiuser interference, and receiver noise. Specifically, we derive an expression for the achievable sum rate and propose an iterative algorithm that attempts to find the precoding matrix which maximizes this expression. Moreover, using a model for PA power consumption, we propose an algorithm that attempts to find the precoding matrix that minimizes the consumed power for a given minimum achievable sum rate. Our numerical results demonstrate that the proposed distortion-aware precoding techniques provide significant improvements in spectral and energy efficiency compared to conventional linear precoders.
Reinforcement learning algorithms often require finiteness of state and action spaces in Markov decision processes (MDPs) and various efforts have been made in the literature towards the applicability of such algorithms for continuous state and action spaces. In this paper, we show that under very mild regularity conditions (in particular, involving only weak continuity of the transition kernel of an MDP), Q-learning for standard Borel MDPs via quantization of states and actions converge to a limit, and furthermore this limit satisfies an optimality equation which leads to near optimality with either explicit performance bounds or which are guaranteed to be asymptotically optimal. Our approach builds on (i) viewing quantization as a measurement kernel and thus a quantized MDP as a POMDP, (ii) utilizing near optimality and convergence results of Q-learning for POMDPs, and (iii) finally, near-optimality of finite state model approximations for MDPs with weakly continuous kernels which we show to correspond to the fixed point of the constructed POMDP. Thus, our paper presents a very general convergence and approximation result for the applicability of Q-learning for continuous MDPs.
Computational fluctuating hydrodynamics aims at understanding the impact of thermal fluctuations on fluid motions at small scales through numerical exploration. These fluctuations are modeled as stochastic flux terms and incorporated into the classical Navier-Stokes equations, which need to be solved numerically. In this paper, we present a novel projection-based method for solving the incompressible fluctuating hydrodynamics equations. By analyzing the equilibrium structure factor spectrum of the velocity field, we investigate how the inherent splitting errors affect the numerical solution of the stochastic partial differential equations in the presence of non-periodic boundary conditions, and how iterative corrections can reduce these errors. Our computational examples demonstrate both the capability of our approach to reproduce correctly stochastic properties of fluids at small scales as well as its potential use in the simulations of multi-physics problems.
The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO estimator and in the Basis Pursuit approach, specialized algorithms are typically required to solve the corresponding high-dimensional non-smooth optimization for large instances. Iteratively Reweighted Least Squares (IRLS) is a widely used algorithm for this purpose due its excellent numerical performance. However, while existing theory is able to guarantee convergence of this algorithm to the minimizer, it does not provide a global convergence rate. In this paper, we prove that a variant of IRLS converges with a global linear rate to a sparse solution, i.e., with a linear error decrease occurring immediately from any initialization, if the measurements fulfill the usual null space property assumption. We support our theory by numerical experiments showing that our linear rate captures the correct dimension dependence. We anticipate that our theoretical findings will lead to new insights for many other use cases of the IRLS algorithm, such as in low-rank matrix recovery.
We present and analyze a momentum-based gradient method for training linear classifiers with an exponentially-tailed loss (e.g., the exponential or logistic loss), which maximizes the classification margin on separable data at a rate of $\widetilde{\mathcal{O}}(1/t^2)$. This contrasts with a rate of $\mathcal{O}(1/\log(t))$ for standard gradient descent, and $\mathcal{O}(1/t)$ for normalized gradient descent. This momentum-based method is derived via the convex dual of the maximum-margin problem, and specifically by applying Nesterov acceleration to this dual, which manages to result in a simple and intuitive method in the primal. This dual view can also be used to derive a stochastic variant, which performs adaptive non-uniform sampling via the dual variables.