Results on the spectral behavior of random matrices as the dimension increases are applied to the problem of detecting the number of sources impinging on an array of sensors. A common strategy to solve this problem is to estimate the multiplicity of the smallest eigenvalue of the spatial covariance matrix $R$ of the sensed data from the sample covariance matrix $\widehat{R}$. Existing approaches, such as that based on information theoretic criteria, rely on the closeness of the noise eigenvalues of $\widehat R$ to each other and, therefore, the sample size has to be quite large when the number of sources is large in order to obtain a good estimate. The analysis presented in this report focuses on the splitting of the spectrum of $\widehat{R}$ into noise and signal eigenvalues. It is shown that, when the number of sensors is large, the number of signals can be estimated with a sample size considerably less than that required by previous approaches. The practical significance of the main result is that detection can be achieved with a number of samples comparable to the number of sensors in large dimensional array processing.
We consider the problem of computing a grevlex Gr\"obner basis for the set $F_r(M)$ of minors of size $r$ of an $n\times n$ matrix $M$ of generic linear forms over a field of characteristic zero or large enough. Such sets are not regular sequences; in fact, the ideal $\langle F_r(M) \rangle$ cannot be generated by a regular sequence. As such, when using the general-purpose algorithm $F_5$ to find the sought Gr\"obner basis, some computing time is wasted on reductions to zero. We use known results about the first syzygy module of $F_r(M)$ to refine the $F_5$ algorithm in order to detect more reductions to zero. In practice, our approach avoids a significant number of reductions to zero. In particular, in the case $r=n-2$, we prove that our new algorithm avoids all reductions to zero, and we provide a corresponding complexity analysis which improves upon the previously known estimates.
This paper proposes a flexible framework for inferring large-scale time-varying and time-lagged correlation networks from multivariate or high-dimensional non-stationary time series with piecewise smooth trends. Built on a novel and unified multiple-testing procedure of time-lagged cross-correlation functions with a fixed or diverging number of lags, our method can accurately disclose flexible time-varying network structures associated with complex functional structures at all time points. We broaden the applicability of our method to the structure breaks by developing difference-based nonparametric estimators of cross-correlations, achieve accurate family-wise error control via a bootstrap-assisted procedure adaptive to the complex temporal dynamics, and enhance the probability of recovering the time-varying network structures using a new uniform variance reduction technique. We prove the asymptotic validity of the proposed method and demonstrate its effectiveness in finite samples through simulation studies and empirical applications.
Suppose we are given access to $n$ independent samples from distribution $\mu$ and we wish to output one of them with the goal of making the output distributed as close as possible to a target distribution $\nu$. In this work we show that the optimal total variation distance as a function of $n$ is given by $\tilde\Theta(\frac{D}{f'(n)})$ over the class of all pairs $\nu,\mu$ with a bounded $f$-divergence $D_f(\nu\|\mu)\leq D$. Previously, this question was studied only for the case when the Radon-Nikodym derivative of $\nu$ with respect to $\mu$ is uniformly bounded. We then consider an application in the seemingly very different field of smoothed online learning, where we show that recent results on the minimax regret and the regret of oracle-efficient algorithms still hold even under relaxed constraints on the adversary (to have bounded $f$-divergence, as opposed to bounded Radon-Nikodym derivative). Finally, we also study efficacy of importance sampling for mean estimates uniform over a function class and compare importance sampling with rejection sampling.
The use of high order fully implicit Runge-Kutta methods is of significant importance in the context of the numerical solution of transient partial differential equations, in particular when solving large scale problems due to fine space resolution with many millions of spatial degrees of freedom and long time intervals. In this study we consider strongly A-stable implicit Runge-Kutta methods of arbitrary order of accuracy, based on Radau quadratures, for which efficient preconditioners have been introduced. A refined spectral analysis of the corresponding matrices and matrix-sequences is presented, both in terms of localization and asymptotic global distribution of the eigenvalues. Specific expressions of the eigenvectors are also obtained. The given study fully agrees with the numerically observed spectral behavior and substantially improves the theoretical studies done in this direction so far. Concluding remarks and open problems end the current work, with specific attention to the potential generalizations of the hereby suggested general approach.
We present ATC, a C++ library for advanced Tucker-based lossy compression of dense multidimensional numerical data in a shared-memory parallel setting, based on the sequentially truncated higher-order singular value decomposition (ST-HOSVD) and bit plane truncation. Several techniques are proposed to improve speed, memory usage, error control and compression rate. First, a hybrid truncation scheme is described which combines Tucker rank truncation and TTHRESH quantization [Ballester-Ripoll et al., IEEE Trans. Visual. Comput. Graph., 2020]. We derive a novel expression to approximate the error of truncated Tucker decompositions in the case of core and factor perturbations. Furthermore, we parallelize the quantization and encoding scheme and adjust this phase to improve error control. Moreover, implementation aspects are described, such as an ST-HOSVD procedure using only a single transposition. We also discuss several usability features of ATC, including the presence of multiple interfaces, extensive data type support and integrated downsampling of the decompressed data. Numerical results show that ATC maintains state-of-the-art Tucker compression rates, while providing average speed-up factors of 2.2-3.5 and halving memory usage. Furthermore, our compressor provides precise error control, only deviating 1.4% from the requested error on average. Finally, ATC often achieves higher compression than non-Tucker-based compressors in the high-error domain.
This paper is concerned with orthonormal systems in real intervals, given with zero Dirichlet boundary conditions. More specifically, our interest is in systems with a skew-symmetric differentiation matrix (this excludes orthonormal polynomials). We consider a simple construction of such systems and pursue its ramifications. In general, given any $\mathrm{C}^1(a,b)$ weight function such that $w(a)=w(b)=0$, we can generate an orthonormal system with a skew-symmetric differentiation matrix. Except for the case $a=-\infty$, $b=+\infty$, only a limited number of powers of that matrix is bounded and we establish a connection between properties of the weight function and boundedness. In particular, we examine in detail two weight functions: the Laguerre weight function $x^\alpha \mathrm{e}^{-x}$ for $x>0$ and $\alpha>0$ and the ultraspherical weight function $(1-x^2)^\alpha$, $x\in(-1,1)$, $\alpha>0$, and establish their properties. Both weights share a most welcome feature of {\em separability,\/} which allows for fast computation. The quality of approximation is highly sensitive to the choice of $\alpha$ and we discuss how to choose optimally this parameter, depending on the number of zero boundary conditions.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.