亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many variations of the classical graph coloring model have been intensively studied due to their multiple applications; scheduling problems and aircraft assignments, for instance, motivate the robust coloring problem. This model gets to capture natural constraints of those optimization problems by combining the information provided by two colorings: a vertex coloring of a graph and the induced edge coloring on a subgraph of its complement; the goal is to minimize, among all proper colorings of the graph for a fixed number of colors, the number of edges in the subgraph with the endpoints of the same color. The study of the robust coloring model has been focused on the search for heuristics due to its NP-hard character when using at least three colors, but little progress has been made in other directions. We present a new approach on the problem obtaining the first collection of non-heuristic results for general graphs; among them, we prove that robust coloring is the model that better approaches the equitable partition of the vertex set, even when the graph does not admit a so-called \emph{equitable coloring}. We also show the NP-completeness of its decision problem for the unsolved case of two colors, obtain bounds on the associated robust coloring parameter, and solve a conjecture on paths that illustrates the complexity of studying this coloring model.

相關內容

Online computation is a concept to model uncertainty where not all information on a problem instance is known in advance. An online algorithm receives requests which reveal the instance piecewise and has to respond with irrevocable decisions. Often, an adversary is assumed that constructs the instance knowing the deterministic behavior of the algorithm. Thus, the adversary is able to tailor the input to any online algorithm. From a game theoretical point of view, the adversary and the online algorithm are players in an asymmetric two-player game. To overcome this asymmetry, the online algorithm is equipped with an isomorphic copy of the graph, which is referred to as unlabeled map. By applying the game theoretical perspective on online graph problems, where the solution is a subset of the vertices, we analyze the complexity of these online vertex subset games. For this, we introduce a framework for reducing online vertex subset games from TQBF. This framework is based on gadget reductions from 3-SATISFIABILITY to the corresponding offline problem. We further identify a set of rules for extending the 3-SATISFIABILITY-reduction and provide schemes for additional gadgets which assure that these rules are fulfilled. By extending the gadget reduction of the vertex subset problem with these additional gadgets, we obtain a reduction for the corresponding online vertex subset game. At last, we provide example reductions for online vertex subset games based on VERTEX COVER, INDEPENDENT SET, and DOMINATING SET, proving that they are PSPACE-complete. Thus, this paper establishes that the online version with a map of NP-complete vertex subset problems form a large class of PSPACE-complete problems.

For a given polygonal region $P$, the Lawn Mowing Problem (LMP) asks for a shortest tour $T$ that gets within Euclidean distance 1/2 of every point in $P$; this is equivalent to computing a shortest tour for a unit-diameter cutter $C$ that covers all of $P$. As a generalization of the Traveling Salesman Problem, the LMP is NP-hard; unlike the discrete TSP, however, the LMP has defied efforts to achieve exact solutions, due to its combination of combinatorial complexity with continuous geometry. We provide a number of new contributions that provide insights into the involved difficulties, as well as positive results that enable both theoretical and practical progress. (1) We show that the LMP is algebraically hard: it is not solvable by radicals over the field of rationals, even for the simple case in which $P$ is a $2\times 2$ square. This implies that it is impossible to compute exact optimal solutions under models of computation that rely on elementary arithmetic operations and the extraction of $k$th roots, and explains the perceived practical difficulty. (2) We exploit this algebraic analysis for the natural class of polygons with axis-parallel edges and integer vertices (i.e., polyominoes), highlighting the relevance of turn-cost minimization for Lawn Mowing tours, and leading to a general construction method for feasible tours. (3) We show that this construction method achieves theoretical worst-case guarantees that improve previous approximation factors for polyominoes. (4) We demonstrate the practical usefulness \emph{beyond polyominoes} by performing an extensive practical study on a spectrum of more general benchmark polygons: We obtain solutions that are better than the previous best values by Fekete et al., for instance sizes up to $20$ times larger.

In this paper, we devise a scheme for kernelizing, in sublinear space and polynomial time, various problems on planar graphs. The scheme exploits planarity to ensure that the resulting algorithms run in polynomial time and use O((sqrt(n) + k) log n) bits of space, where n is the number of vertices in the input instance and k is the intended solution size. As examples, we apply the scheme to Dominating Set and Vertex Cover. For Dominating Set, we also show that a well-known kernelization algorithm due to Alber et al. (JACM 2004) can be carried out in polynomial time and space O(k log n). Along the way, we devise restricted-memory procedures for computing region decompositions and approximating the aforementioned problems, which might be of independent interest.

Power analysis poses a significant threat to the security of cryptographic algorithms, as it can be leveraged to recover secret keys. While various software-based countermeasures exist to mitigate this non-invasive attack, they often involve a trade-off between time and space constraints. Techniques such as masking and shuffling, while effective, can noticeably impact execution speed and rely heavily on run-time random number generators. On the contrary, internally encoded implementations of block ciphers offer an alternative approach that does not rely on run-time random sources, but it comes with the drawback of requiring substantial memory space to accommodate lookup tables. Internal encoding, commonly employed in white-box cryptography, suffers from a security limitation as it does not effectively protect the secret key against statistical analysis. To overcome this weakness, this paper introduces a secure internal encoding method for an AES implementation. By addressing the root cause of vulnerabilities found in previous encoding methods, we propose a balanced encoding technique that aims to minimize the problematic correlation with key-dependent intermediate values. We analyze the potential weaknesses associated with the balanced encoding and present a method that utilizes complementary sets of lookup tables. In this approach, the size of the lookup tables is approximately 512KB, and the number of table lookups is 1,024. This is comparable to the table size of non-protected white-box AES-128 implementations, while requiring only half the number of lookups. By adopting this method, our aim is to introduce a non-masking technique that mitigates the vulnerability to statistical analysis present in current internally-encoded AES implementations.

The Makespan Scheduling problem is an extensively studied NP-hard problem, and its simplest version looks for an allocation approach for a set of jobs with deterministic processing times to two identical machines such that the makespan is minimized. However, in real life scenarios, the actual processing time of each job may be stochastic around the expected value with a variance, under the influence of external factors, and the actual processing times of these jobs may be correlated with covariances. Thus within this paper, we propose a chance-constrained version of the Makespan Scheduling problem and investigate the theoretical performance of the classical Randomized Local Search and (1+1) EA for it. More specifically, we first study two variants of the Chance-constrained Makespan Scheduling problem and their computational complexities, then separately analyze the expected runtime of the two algorithms to obtain an optimal solution or almost optimal solution to the instances of the two variants. In addition, we investigate the experimental performance of the two algorithms for the two variants.

Profile likelihoods are rarely used in geostatistical models due to the computational burden imposed by repeated decompositions of large variance matrices. Accounting for uncertainty in covariance parameters can be highly consequential in geostatistical models as some covariance parameters are poorly identified, the problem is severe enough that the differentiability parameter of the Matern correlation function is typically treated as fixed. The problem is compounded with anisotropic spatial models as there are two additional parameters to consider. In this paper, we make the following contributions: 1, A methodology is created for profile likelihoods for Gaussian spatial models with Mat\'ern family of correlation functions, including anisotropic models. This methodology adopts a novel reparametrization for generation of representative points, and uses GPUs for parallel profile likelihoods computation in software implementation. 2, We show the profile likelihood of the Mat\'ern shape parameter is often quite flat but still identifiable, it can usually rule out very small values. 3, Simulation studies and applications on real data examples show that profile-based confidence intervals of covariance parameters and regression parameters have superior coverage to the traditional standard Wald type confidence intervals.

Let $G$ be an undirected graph, and $s,t$ distinguished vertices of $G$. A minimal $s,t$-separator is an inclusion-wise minimal vertex-set whose removal places $s$ and $t$ in distinct connected components. We present an algorithm for listing the minimal $s,t$-separators of a graph in non-decreasing order of cardinality, in polynomial-delay. This problem finds applications in various algorithms parameterized by treewidth, which include query evaluation in relational databases, probabilistic inference, and many more. In the process, we prove several results that are of independent interest. We establish a new island of tractability to the intensively studied 2-disjoint connected subgraphs problem, which is NP-complete even for restricted graph classes that include planar graphs, and prove new characterizations of minimal $s,t$-separators. Ours is the first to present a ranked enumeration algorithm for minimal separators where the delay is polynomial in the size of the input graph.

The Immersed Boundary (IB) method of Peskin (J. Comput. Phys., 1977) is useful for problems involving fluid-structure interactions or complex geometries. By making use of a regular Cartesian grid that is independent of the geometry, the IB framework yields a robust numerical scheme that can efficiently handle immersed deformable structures. Additionally, the IB method has been adapted to problems with prescribed motion and other PDEs with given boundary data. IB methods for these problems traditionally involve penalty forces which only approximately satisfy boundary conditions, or they are formulated as constraint problems. In the latter approach, one must find the unknown forces by solving an equation that corresponds to a poorly conditioned first-kind integral equation. This operation can require a large number of iterations of a Krylov method, and since a time-dependent problem requires this solve at each time step, this method can be prohibitively inefficient without preconditioning. In this work, we introduce a new, well-conditioned IB formulation for boundary value problems, which we call the Immersed Boundary Double Layer (IBDL) method. We present the method as it applies to Poisson and Helmholtz problems to demonstrate its efficiency over the original constraint method. In this double layer formulation, the equation for the unknown boundary distribution corresponds to a well-conditioned second-kind integral equation that can be solved efficiently with a small number of iterations of a Krylov method. Furthermore, the iteration count is independent of both the mesh size and immersed boundary point spacing. The method converges away from the boundary, and when combined with a local interpolation, it converges in the entire PDE domain. Additionally, while the original constraint method applies only to Dirichlet problems, the IBDL formulation can also be used for Neumann conditions.

We study the online variant of the Min-Sum Set Cover (MSSC) problem, a generalization of the well-known list update problem. In the MSSC problem, an algorithm has to maintain the time-varying permutation of the list of $n$ elements, and serve a sequence of requests $R_1, R_2, \dots, R_t, \dots$. Each $R_t$ is a subset of elements of cardinality at most $r$. For a requested set $R_t$, an online algorithm has to pay the cost equal to the position of the first element from $R_t$ on its list. Then, it may arbitrarily permute its list, paying the number of swapped adjacent element pairs. We present the first constructive deterministic algorithm for this problem, whose competitive ratio does not depend on $n$. Our algorithm is $O(r^2)$-competitive, which beats both the existential upper bound of $O(r^4)$ by Bienkowski and Mucha [AAAI '23] and the previous constructive bound of $O(r^{3/2} \cdot \sqrt{n})$ by Fotakis et al. [ICALP '20]. Furthermore, we show that our algorithm attains an asymptotically optimal competitive ratio of $O(r)$ when compared to the best fixed permutation of elements.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

北京阿比特科技有限公司