We theoretically analyze the model selection consistency of least absolute shrinkage and selection operator (Lasso), both with and without post-thresholding, for high-dimensional Ising models. For random regular (RR) graphs of size $p$ with regular node degree $d$ and uniform couplings $\theta_0$, it is rigorously proved that Lasso \textit{without post-thresholding} is model selection consistent in the whole paramagnetic phase with the same order of sample complexity $n=\Omega{(d^3\log{p})}$ as that of $\ell_1$-regularized logistic regression ($\ell_1$-LogR). This result is consistent with the conjecture in Meng, Obuchi, and Kabashima 2021 using the non-rigorous replica method from statistical physics and thus complements it with a rigorous proof. For general tree-like graphs, it is demonstrated that the same result as RR graphs can be obtained under mild assumptions of the dependency condition and incoherence condition. Moreover, we provide a rigorous proof of the model selection consistency of Lasso with post-thresholding for general tree-like graphs in the paramagnetic phase without further assumptions on the dependency and incoherence conditions. Experimental results agree well with our theoretical analysis.
Penalized logistic regression is extremely useful for binary classification with large number of covariates (higher than the sample size), having several real life applications, including genomic disease classification. However, the existing methods based on the likelihood loss function are sensitive to data contamination and other noise and, hence, robust methods are needed for stable and more accurate inference. In this paper, we propose a family of robust estimators for sparse logistic models utilizing the popular density power divergence based loss function and the general adaptively weighted LASSO penalties. We study the local robustness of the proposed estimators through its influence function and also derive its oracle properties and asymptotic distribution. With extensive empirical illustrations, we demonstrate the significantly improved performance of our proposed estimators over the existing ones with particular gain in robustness. Our proposal is finally applied to analyse four different real datasets for cancer classification, obtaining robust and accurate models, that simultaneously performs gene selection and patient classification.
In this paper we consider the closest vector problem (CVP) for lattices $\Lambda \subseteq \mathbb{Z}^n$ given by a generator matrix $A\in \mathcal{M}_{n\times n}(\mathbb{Z})$. Let $b>0$ be the maximum of the absolute values of the entries of the matrix $A$. We prove that the CVP can be reduced in polynomial time to a quadratic unconstrained binary optimization (QUBO) problem in $O(n^2(\log(n)+\log(b)))$ binary variables, where the length of the coefficients in the corresponding quadratic form is $O(n(\log(n)+\log(b)))$.
Structure learning via MCMC sampling is known to be very challenging because of the enormous search space and the existence of Markov equivalent DAGs. Theoretical results on the mixing behavior are lacking. In this work, we prove the rapid mixing of a random walk Metropolis-Hastings algorithm, which reveals that the complexity of Bayesian learning of sparse equivalence classes grows only polynomially in $n$ and $p$, under some high-dimensional assumptions. A series of high-dimensional consistency results is obtained, including the strong selection consistency of an empirical Bayes model for structure learning. Our proof is based on two new results. First, we derive a general mixing time bound on finite state spaces, which can be applied to local MCMC schemes for other model selection problems. Second, we construct high-probability search paths on the space of equivalence classes with node degree constraints by proving a combinatorial property of DAG comparisons. Simulation studies on the proposed MCMC sampler are conducted to illustrate the main theoretical findings.
This paper provides two parallel solutions on the mixed boundary value problem of a unit annulus subjected to a partially fixed outer periphery and an arbitrary traction acting along the inner periphery using the complex variable method. The analytic continuation is applied to turn the mixed boundary value problem into a Riemann-Hilbert problem across the free segment along the outer periphery. Two parallel interpreting methods of the unused traction and displacement boundary condition along the outer periphery together with the traction boundary condition along the inner periphery respectively form two parallel complex linear constraint sets, which are then iteratively solved via a successive approximation method to reach the same stable stress and displacement solutions with the Lanczos filtering technique. Finally, four typical numerical cases coded by \texttt{FORTRAN} are carried out and compared to the same cases performed on \texttt{ABAQUS}. The results indicate that these two parallel solutions are both accurate, stable, robust, and fast, and validate that these two parallel solutions are numerically equivalent.
Strong spatial mixing (SSM) is an important quantitative notion of correlation decay for Gibbs distributions arising in statistical physics, probability theory, and theoretical computer science. A longstanding conjecture is that the uniform distribution on proper $q$-colorings on a $\Delta$-regular tree exhibits SSM whenever $q \ge \Delta+1$. Moreover, it is widely believed that as long as SSM holds on bounded-degree trees with $q$ colors, one would obtain an efficient sampler for $q$-colorings on all bounded-degree graphs via simple Markov chain algorithms. It is surprising that such a basic question is still open, even on trees, but then again it also highlights how much we still have to learn about random colorings. In this paper, we show the following: (1) For any $\Delta \ge 3$, SSM holds for random $q$-colorings on trees of maximum degree $\Delta$ whenever $q \ge \Delta + 3$. Thus we almost fully resolve the aforementioned conjecture. Our result substantially improves upon the previously best bound which requires $q \ge 1.59\Delta+\gamma^*$ for an absolute constant $\gamma^* > 0$. (2) For any $\Delta\ge 3$ and girth $g = \Omega_\Delta(1)$, we establish optimal mixing of the Glauber dynamics for $q$-colorings on graphs of maximum degree $\Delta$ and girth $g$ whenever $q \ge \Delta+3$. Our approach is based on a new general reduction from spectral independence on large-girth graphs to SSM on trees that is of independent interest. Using the same techniques, we also prove near-optimal bounds on weak spatial mixing (WSM), a closely-related notion to SSM, for the antiferromagnetic Potts model on trees.
An information-theoretic estimator is proposed to assess the global identifiability of statistical models with practical consideration. The framework is formulated in a Bayesian statistical setting which is the foundation for parameter estimation under aleatoric and epistemic uncertainty. No assumptions are made about the structure of the statistical model or the prior distribution while constructing the estimator. The estimator has the following notable advantages: first, no controlled experiment or data is required to conduct the practical identifiability analysis; second, different forms of uncertainties, such as model form, parameter, or measurement can be taken into account; third, the identifiability analysis is global, rather than being dependent on a realization of parameters. If an individual parameter has low identifiability, it can belong to an identifiable subset such that parameters within the subset have a functional relationship and thus have a combined effect on the statistical model. The practical identifiability framework is extended to highlight the dependencies between parameter pairs that emerge a posteriori to find identifiable parameter subsets. Examining the practical identifiability of an individual parameter along with its dependencies with other parameters is informative for an estimation-centric parameterization and model selection. The applicability of the proposed approach is demonstrated using a linear Gaussian model and a non-linear methane-air reduced kinetics model.
We give new bounds on the cosystolic expansion constants of several families of high dimensional expanders, and the known coboundary expansion constants of order complexes of homogeneous geometric lattices, including the spherical building of $SL_n(F_q)$. The improvement applies to the high dimensional expanders constructed by Lubotzky, Samuels and Vishne, and by Kaufman and Oppenheim. Our new expansion constants do not depend on the degree of the complex nor on its dimension, nor on the group of coefficients. This implies improved bounds on Gromov's topological overlap constant, and on Dinur and Meshulam's cover stability, which may have applications for agreement testing. In comparison, existing bounds decay exponentially with the ambient dimension (for spherical buildings) and in addition decay linearly with the degree (for all known bounded-degree high dimensional expanders). Our results are based on several new techniques: * We develop a new "color-restriction" technique which enables proving dimension-free expansion by restricting a multi-partite complex to small random subsets of its color classes. * We give a new "spectral" proof for Evra and Kaufman's local-to-global theorem, deriving better bounds and getting rid of the dependence on the degree. This theorem bounds the cosystolic expansion of a complex using coboundary expansion and spectral expansion of the links. * We derive absolute bounds on the coboundary expansion of the spherical building (and any order complex of a homogeneous geometric lattice) by constructing a novel family of very short cones.
Building models and methods for complex data is an important task for many scientific and application areas. Many modern datasets exhibit dependencies among observations as well as variables. This gives rise to the challenging problem of analyzing high-dimensional matrix-variate data with unknown dependence structures. To address this challenge, Kalaitzis et. al. (2013) proposed the Bigraphical Lasso (BiGLasso), an estimator for precision matrices of matrix-normals based on the Cartesian product of graphs. Subsequently, Greenewald, Zhou and Hero (GZH 2019) introduced a multiway tensor generalization of the BiGLasso estimator, known as the TeraLasso estimator. In this paper, we provide sharp rates of convergence in the Frobenius and operator norm for both BiGLasso and TeraLasso estimators for estimating inverse covariance matrices. This improves upon the rates presented in GZH 2019. In particular, (a) we strengthen the bounds for the relative errors in the operator and Frobenius norm by a factor of approximately $\log p$; (b) Crucially, this improvement allows for finite-sample estimation errors in both norms to be derived for the two-way Kronecker sum model. This closes the gap between the low single-sample error for the two-way model empirically observed in GZH 2019 and the theoretical bounds therein. The two-way regime is particularly significant since it is the setting of common and generic applications in practice. Normality is not needed in our proofs; instead, we consider subgaussian ensembles and derive tight concentration of measure bounds, using tensor unfolding techniques. The proof techniques may be of independent interest to the analysis of tensor-valued data.
In the present paper we consider the initial data, external force, viscosity coefficients, and heat conductivity coefficient as random data for the compressible Navier--Stokes--Fourier system. The Monte Carlo method, which is frequently used for the approximation of statistical moments, is combined with a suitable deterministic discretisation method in physical space and time. Under the assumption that numerical densities and temperatures are bounded in probability, we prove the convergence of random finite volume solutions to a statistical strong solution by applying genuine stochastic compactness arguments. Further, we show the convergence and error estimates for the Monte Carlo estimators of the expectation and deviation. We present several numerical results to illustrate the theoretical results.
The $k$-tensor Ising model is an exponential family on a $p$-dimensional binary hypercube for modeling dependent binary data, where the sufficient statistic consists of all $k$-fold products of the observations, and the parameter is an unknown $k$-fold tensor, designed to capture higher-order interactions between the binary variables. In this paper, we describe an approach based on a penalization technique that helps us recover the signed support of the tensor parameter with high probability, assuming that no entry of the true tensor is too close to zero. The method is based on an $\ell_1$-regularized node-wise logistic regression, that recovers the signed neighborhood of each node with high probability. Our analysis is carried out in the high-dimensional regime, that allows the dimension $p$ of the Ising model, as well as the interaction factor $k$ to potentially grow to $\infty$ with the sample size $n$. We show that if the minimum interaction strength is not too small, then consistent recovery of the entire signed support is possible if one takes $n = \Omega((k!)^8 d^3 \log \binom{p-1}{k-1})$ samples, where $d$ denotes the maximum degree of the hypernetwork in question. Our results are validated in two simulation settings, and applied on a real neurobiological dataset consisting of multi-array electro-physiological recordings from the mouse visual cortex, to model higher-order interactions between the brain regions.