亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Within the statistical literature, there is a lack of methods that allow for asymmetric multivariate spatial effects to model relations underlying complex spatial phenomena. Intercropping is one such phenomenon. In this ancient agricultural practice multiple crop species or varieties are cultivated together in close proximity and are subject to mutual competition. To properly analyse such a system, it is necessary to account for both within- and between-plot effects, where between-plot effects are asymmetric. Building on the multivariate spatial autoregressive model and the Gaussian graphical model, the proposed method takes asymmetric spatial relations into account, thereby removing some of the limiting factors of spatial analyses and giving researchers a better indication of the existence and extend of spatial relationships. Using a Bayesian-estimation framework, the model shows promising results in the simulation study. The model is applied on intercropping data consisting of Belgian endive and beetroot, illustrating the usage of the proposed methodology. An R package containing the proposed methodology can be found on // CRAN.R-project.org/package=SAGM.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 冪法 · 數據填補 · 預測器/決策函數 · Principle ·
2023 年 9 月 29 日

Exploration and analysis of massive datasets has recently generated increasing interest in the research and development communities. It has long been a recognized problem that many datasets contain significant levels of missing numerical data. We introduce a mathematically principled stochastic optimization imputation method based on the theory of Kriging. This is shown to be a powerful method for imputation. However, its computational effort and potential numerical instabilities produce costly and/or unreliable predictions, potentially limiting its use on large scale datasets. In this paper, we apply a recently developed multi-level stochastic optimization approach to the problem of imputation in massive medical records. The approach is based on computational applied mathematics techniques and is highly accurate. In particular, for the Best Linear Unbiased Predictor (BLUP) this multi-level formulation is exact, and is also significantly faster and more numerically stable. This permits practical application of Kriging methods to data imputation problems for massive datasets. We test this approach on data from the National Inpatient Sample (NIS) data records, Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and Quality. Numerical results show the multi-level method significantly outperforms current approaches and is numerically robust. In particular, it has superior accuracy as compared with methods recommended in the recent report from HCUP on the important problem of missing data, which could lead to sub-optimal and poorly based funding policy decisions. In comparative benchmark tests it is shown that the multilevel stochastic method is significantly superior to recommended methods in the report, including Predictive Mean Matching (PMM) and Predicted Posterior Distribution (PPD), with up to 75% reductions in error.

Despite the promising progress in multi-modal tasks, current large multi-modal models (LMMs) are prone to hallucinating inconsistent descriptions with respect to the associated image and human instructions. This paper addresses this issue by introducing the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction. Our dataset comprises 400k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers. Unlike existing studies that primarily focus on positive instruction samples, we design LRV-Instruction to include both positive and negative instructions for more robust visual instruction tuning. Our negative instructions are designed at three semantic levels: (i) Nonexistent Object Manipulation, (ii) Existent Object Manipulation and (iii) Knowledge Manipulation. To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a stable approach to evaluate visual instruction tuning like human experts. GAVIE does not require human-annotated groundtruth answers and can adapt to diverse instruction formats. We conduct comprehensive experiments to investigate the hallucination of LMMs. Our results demonstrate existing LMMs exhibit significant hallucinations when presented with our negative instructions, particularly Existent Object and Knowledge Manipulation instructions. Moreover, we successfully mitigate hallucination by finetuning MiniGPT4 and mPLUG-Owl on LRV-Instruction while improving performance on several public datasets compared to state-of-the-art methods. Additionally, we observed that a balanced ratio of positive and negative instances in the training data leads to a more robust model.

Active learning (AL) aims to reduce labeling costs by querying the examples most beneficial for model learning. While the effectiveness of AL for fine-tuning transformer-based pre-trained language models (PLMs) has been demonstrated, it is less clear to what extent the AL gains obtained with one model transfer to others. We consider the problem of transferability of actively acquired datasets in text classification and investigate whether AL gains persist when a dataset built using AL coupled with a specific PLM is used to train a different PLM. We link the AL dataset transferability to the similarity of instances queried by the different PLMs and show that AL methods with similar acquisition sequences produce highly transferable datasets regardless of the models used. Additionally, we show that the similarity of acquisition sequences is influenced more by the choice of the AL method than the choice of the model.

Hallucination in text summarization refers to the phenomenon where the model generates information that is not supported by the input source document. Hallucination poses significant obstacles to the accuracy and reliability of the generated summaries. In this paper, we aim to reduce hallucinated outputs or hallucinations in summaries of long-form text documents. We have used the PubMed dataset, which contains long scientific research documents and their abstracts. We have incorporated the techniques of data filtering and joint entity and summary generation (JAENS) in the fine-tuning of the Longformer Encoder-Decoder (LED) model to minimize hallucinations and thereby improve the quality of the generated summary. We have used the following metrics to measure factual consistency at the entity level: precision-source, and F1-target. Our experiments show that the fine-tuned LED model performs well in generating the paper abstract. Data filtering techniques based on some preprocessing steps reduce entity-level hallucinations in the generated summaries in terms of some of the factual consistency metrics.

Simultaneous statistical inference has been a cornerstone in the statistics methodology literature because of its fundamental theory and paramount applications. The mainstream multiple testing literature has traditionally considered two frameworks: the sample size is deterministic, and the test statistics corresponding to different tests are independent. However, in many modern scientific avenues, these assumptions are often violated. There is little study that explores the multiple testing problem in a sequential framework where the test statistics corresponding to the various streams are dependent. This work fills this gap in a unified way by considering the classical means-testing problem in an equicorrelated Gaussian and sequential framework. We focus on sequential test procedures that control the type I and type II familywise error probabilities at pre-specified levels. We establish that our proposed test procedures achieve the optimal expected sample sizes under every possible signal configuration asymptotically, as the two error probabilities vanish at arbitrary rates. Towards this, we elucidate that the ratio of the expected sample size of our proposed rule and that of the classical SPRT goes to one asymptotically, thus illustrating their connection. Generalizing this, we show that our proposed procedures, with appropriately adjusted critical values, are asymptotically optimal for controlling any multiple testing error metric lying between multiples of FWER in a certain sense. This class of metrics includes FDR/FNR, pFDR/pFNR, the per-comparison and per-family error rates, and the false positive rate.

The logical analysis of data, LAD, is a technique that yields two-class classifiers based on Boolean functions having disjunctive normal form (DNF) representation. Although LAD algorithms employ optimization techniques, the resulting binary classifiers or binary rules do not lead to overfitting. We propose a theoretical justification for the absence of overfitting by estimating the Vapnik-Chervonenkis dimension (VC dimension) for LAD models where hypothesis sets consist of DNFs with a small number of cubic monomials. We illustrate and confirm our observations empirically.

Distillation techniques have substantially improved the sampling speed of diffusion models, allowing of the generation within only one step or a few steps. However, these distillation methods require extensive training for each dataset, sampler, and network, which limits their practical applicability. To address this limitation, we propose a straightforward distillation approach, Distilled-ODE solvers (D-ODE solvers), that optimizes the ODE solver rather than training the denoising network. D-ODE solvers are formulated by simply applying a single parameter adjustment to existing ODE solvers. Subsequently, D-ODE solvers with smaller steps are optimized by ODE solvers with larger steps through distillation over a batch of samples. Our comprehensive experiments indicate that D-ODE solvers outperform existing ODE solvers, including DDIM, PNDM, DPM-Solver, DEIS, and EDM, especially when generating samples with fewer steps. Our method incur negligible computational overhead compared to previous distillation techniques, enabling simple and rapid integration with previous samplers. Qualitative analysis further shows that D-ODE solvers enhance image quality while preserving the sampling trajectory of ODE solvers.

Functional data analysis is typically performed in two steps: first, functionally representing discrete observations, and then applying functional methods to the so-represented data. The initial choice of a functional representation may have a significant impact on the second phase of the analysis, as shown in recent research, where data-driven spline bases outperformed the predefined rigid choice of functional representation. The method chooses an initial functional basis by an efficient placement of the knots using a simple machine-learning algorithm. The approach does not apply directly when the data are defined on domains of a higher dimension than one such as, for example, images. The reason is that in higher dimensions the convenient and numerically efficient spline bases are obtained as tensor bases from 1D spline bases that require knots that are located on a lattice. This does not allow for a flexible knot placement that was fundamental for the 1D approach. The goal of this research is to propose two modified approaches that circumvent the problem by coding the irregular knot selection into their densities and utilizing these densities through the topology of the spaces of splines. This allows for regular grids for the knots and thus facilitates using the spline tensor bases. It is tested on 1D data showing that its performance is comparable to or better than the previous methods.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司