Graph-based approximation methods are of growing interest in many areas, including transportation, biological and chemical networks, financial models, image processing, network flows, and more. In these applications, often a basis for the approximation space is not available analytically and must be computed. We propose perturbations of Lagrange bases on graphs, where the Lagrange functions come from a class of functions analogous to classical splines. The basis functions we consider have local support, with each basis function obtained by solving a small energy minimization problem related to a differential operator on the graph. We present $\ell_\infty$ error estimates between the local basis and the corresponding interpolatory Lagrange basis functions in cases where the underlying graph satisfies a mild assumption on the connections of vertices where the function is not known, and the theoretical bounds are examined further in numerical experiments. Included in our analysis is a mixed-norm inequality for positive definite matrices that is tighter than the general estimate $\|A\|_{\infty} \leq \sqrt{n} \|A\|_{2}$.
This contribution extends the localized training approach, traditionally employed for multiscale problems and parameterized partial differential equations (PDEs) featuring locally heterogeneous coefficients, to the class of linear, positive symmetric operators, known as Friedrichs' operators. Considering a local subdomain with corresponding oversampling domain we prove the compactness of the transfer operator which maps boundary data to solutions on the interior domain. While a Caccioppoli-inequality quantifying the energy decay to the interior holds true for all Friedrichs' systems, showing a compactness result for the graph-spaces hosting the solution is additionally necessary. We discuss the mixed formulation of a convection-diffusion-reaction problem where the necessary compactness result is obtained by the Picard-Weck-Weber theorem. Our numerical results, focusing on a scenario involving heterogeneous diffusion fields with multiple high-conductivity channels, demonstrate the effectiveness of the proposed method.
Physics-informed neural networks (PINN) is a extremely powerful paradigm used to solve equations encountered in scientific computing applications. An important part of the procedure is the minimization of the equation residual which includes, when the equation is time-dependent, a time sampling. It was argued in the literature that the sampling need not be uniform but should overweight initial time instants, but no rigorous explanation was provided for these choice. In this paper we take some prototypical examples and, under standard hypothesis concerning the neural network convergence, we show that the optimal time sampling follows a truncated exponential distribution. In particular we explain when the time sampling is best to be uniform and when it should not be. The findings are illustrated with numerical examples on linear equation, Burgers' equation and the Lorenz system.
Domain decomposition provides an effective way to tackle the dilemma of physics-informed neural networks (PINN) which struggle to accurately and efficiently solve partial differential equations (PDEs) in the whole domain, but the lack of efficient tools for dealing with the interfaces between two adjacent sub-domains heavily hinders the training effects, even leads to the discontinuity of the learned solutions. In this paper, we propose a symmetry group based domain decomposition strategy to enhance the PINN for solving the forward and inverse problems of the PDEs possessing a Lie symmetry group. Specifically, for the forward problem, we first deploy the symmetry group to generate the dividing-lines having known solution information which can be adjusted flexibly and are used to divide the whole training domain into a finite number of non-overlapping sub-domains, then utilize the PINN and the symmetry-enhanced PINN methods to learn the solutions in each sub-domain and finally stitch them to the overall solution of PDEs. For the inverse problem, we first utilize the symmetry group acting on the data of the initial and boundary conditions to generate labeled data in the interior domain of PDEs and then find the undetermined parameters as well as the solution by only training the neural networks in a sub-domain. Consequently, the proposed method can predict high-accuracy solutions of PDEs which are failed by the vanilla PINN in the whole domain and the extended physics-informed neural network in the same sub-domains. Numerical results of the Korteweg-de Vries equation with a translation symmetry and the nonlinear viscous fluid equation with a scaling symmetry show that the accuracies of the learned solutions are improved largely.
Advanced Krylov subspace methods are investigated for the solution of large sparse linear systems arising from stiff adjoint-based aerodynamic shape optimization problems. A special attention is paid to the flexible inner-outer GMRES strategy combined with most relevant preconditioning and deflation techniques. The choice of this specific class of Krylov solvers for challenging problems is based on its outstanding convergence properties. Typically in our implementation the efficiency of the preconditioner is enhanced with a domain decomposition method with overlapping. However, maintaining the performance of the preconditioner may be challenging since scalability and efficiency of a preconditioning technique are properties often antagonistic to each other. In this paper we demonstrate how flexible inner-outer Krylov methods are able to overcome this critical issue. A numerical study is performed considering either a Finite Volume (FV), or a high-order Discontinuous Galerkin (DG) discretization which affect the arithmetic intensity and memory-bandwith of the algebraic operations. We consider test cases of transonic turbulent flows with RANS modelling over the two-dimensional supercritical OAT15A airfoil and the three-dimensional ONERA M6 wing. Benefits in terms of robustness and convergence compared to standard GMRES solvers are obtained. Strong scalability analysis shows satisfactory results. Based on these representative problems a discussion of the recommended numerical practices is proposed.
Inverse problems in granular flows, such as landslides and debris flows, involve estimating material parameters or boundary conditions based on target runout profile. Traditional high-fidelity simulators for these inverse problems are computationally demanding, restricting the number of simulations possible. Additionally, their non-differentiable nature makes gradient-based optimization methods, known for their efficiency in high-dimensional problems, inapplicable. While machine learning-based surrogate models offer computational efficiency and differentiability, they often struggle to generalize beyond their training data due to their reliance on low-dimensional input-output mappings that fail to capture the complete physics of granular flows. We propose a novel differentiable graph neural network simulator (GNS) by combining reverse mode automatic differentiation of graph neural networks with gradient-based optimization for solving inverse problems. GNS learns the dynamics of granular flow by representing the system as a graph and predicts the evolution of the graph at the next time step, given the current state. The differentiable GNS shows optimization capabilities beyond the training data. We demonstrate the effectiveness of our method for inverse estimation across single and multi-parameter optimization problems, including evaluating material properties and boundary conditions for a target runout distance and designing baffle locations to limit a landslide runout. Our proposed differentiable GNS framework offers an orders of magnitude faster solution to these inverse problems than the conventional finite difference approach to gradient-based optimization.
Graph powers are a well-studied concept in graph theory. Analogous to graph powers, Chandran et al.[3] introduced the concept of bipartite powers for bipartite graphs. In this paper, we will demonstrate that some well-known classes of bipartite graphs, namely the interval bigraphs, proper interval bigraphs, and bigraphs of Ferrers dimension 2, are closed under the operation of taking bipartite powers. Finally, we define strongly closed property for bipartite graphs under powers and have shown that the class of chordal bipartite graphs is strongly closed under powers.
The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.
High-dimensional linear models have been widely studied, but the developments in high-dimensional generalized linear models, or GLMs, have been slower. In this paper, we propose an empirical or data-driven prior leading to an empirical Bayes posterior distribution which can be used for estimation of and inference on the coefficient vector in a high-dimensional GLM, as well as for variable selection. We prove that our proposed posterior concentrates around the true/sparse coefficient vector at the optimal rate, provide conditions under which the posterior can achieve variable selection consistency, and prove a Bernstein--von Mises theorem that implies asymptotically valid uncertainty quantification. Computation of the proposed empirical Bayes posterior is simple and efficient, and is shown to perform well in simulations compared to existing Bayesian and non-Bayesian methods in terms of estimation and variable selection.
With the advent of massive data sets much of the computational science and engineering community has moved toward data-intensive approaches in regression and classification. However, these present significant challenges due to increasing size, complexity and dimensionality of the problems. In particular, covariance matrices in many cases are numerically unstable and linear algebra shows that often such matrices cannot be inverted accurately on a finite precision computer. A common ad hoc approach to stabilizing a matrix is application of a so-called nugget. However, this can change the model and introduce error to the original solution. It is well known from numerical analysis that ill-conditioned matrices cannot be accurately inverted. In this paper we develop a multilevel computational method that scales well with the number of observations and dimensions. A multilevel basis is constructed adapted to a kD-tree partitioning of the observations. Numerically unstable covariance matrices with large condition numbers can be transformed into well conditioned multilevel ones without compromising accuracy. Moreover, it is shown that the multilevel prediction exactly solves the Best Linear Unbiased Predictor (BLUP) and Generalized Least Squares (GLS) model, but is numerically stable. The multilevel method is tested on numerically unstable problems of up to 25 dimensions. Numerical results show speedups of up to 42,050 times for solving the BLUP problem, but with the same accuracy as the traditional iterative approach. For very ill-conditioned cases the speedup is infinite. In addition, decay estimates of the multilevel covariance matrices are derived based on high dimensional interpolation techniques from the field of numerical analysis. This work lies at the intersection of statistics, uncertainty quantification, high performance computing and computational applied mathematics.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.