亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While anti-amnesia FSCIL learners often excel in incremental sessions, they tend to prioritize mitigating knowledge attrition over harnessing the model's potential for knowledge acquisition. In this paper, we delve into the foundations of model generalization in FSCIL through the lens of the Neural Tangent Kernel (NTK). Our primary design focus revolves around ensuring optimal NTK convergence and NTK-related generalization error, serving as the theoretical bedrock for exceptional generalization. To attain globally optimal NTK convergence, we employ a meta-learning mechanism grounded in mathematical principles to guide the optimization process within an expanded network. Furthermore, to reduce the NTK-related generalization error, we commence from the foundational level, optimizing the relevant factors constituting its generalization loss. Specifically, we initiate self-supervised pre-training on the base session to shape the initial network weights. Then they are carefully refined through curricular alignment, followed by the application of dual NTK regularization tailored specifically for both convolutional and linear layers. Through the combined effects of these measures, our network acquires robust NTK properties, significantly enhancing its foundational generalization. On popular FSCIL benchmark datasets, our NTK-FSCIL surpasses contemporary state-of-the-art approaches, elevating end-session accuracy by 2.9% to 8.7%.

相關內容

Survival prediction is a complex ordinal regression task that aims to predict the survival coefficient ranking among a cohort of patients, typically achieved by analyzing patients' whole slide images. Existing deep learning approaches mainly adopt multiple instance learning or graph neural networks under weak supervision. Most of them are unable to uncover the diverse interactions between different types of biological entities(\textit{e.g.}, cell cluster and tissue block) across multiple scales, while such interactions are crucial for patient survival prediction. In light of this, we propose a novel multi-scale heterogeneity-aware hypergraph representation framework. Specifically, our framework first constructs a multi-scale heterogeneity-aware hypergraph and assigns each node with its biological entity type. It then mines diverse interactions between nodes on the graph structure to obtain a global representation. Experimental results demonstrate that our method outperforms state-of-the-art approaches on three benchmark datasets. Code is publicly available at \href{//github.com/Hanminghao/H2GT}{//github.com/Hanminghao/H2GT}.

This work designs and analyzes a novel set of algorithms for multi-agent reinforcement learning (MARL) based on the principle of information-directed sampling (IDS). These algorithms draw inspiration from foundational concepts in information theory, and are proven to be sample efficient in MARL settings such as two-player zero-sum Markov games (MGs) and multi-player general-sum MGs. For episodic two-player zero-sum MGs, we present three sample-efficient algorithms for learning Nash equilibrium. The basic algorithm, referred to as MAIDS, employs an asymmetric learning structure where the max-player first solves a minimax optimization problem based on the joint information ratio of the joint policy, and the min-player then minimizes the marginal information ratio with the max-player's policy fixed. Theoretical analyses show that it achieves a Bayesian regret of tilde{O}(sqrt{K}) for K episodes. To reduce the computational load of MAIDS, we develop an improved algorithm called Reg-MAIDS, which has the same Bayesian regret bound while enjoying less computational complexity. Moreover, by leveraging the flexibility of IDS principle in choosing the learning target, we propose two methods for constructing compressed environments based on rate-distortion theory, upon which we develop an algorithm Compressed-MAIDS wherein the learning target is a compressed environment. Finally, we extend Reg-MAIDS to multi-player general-sum MGs and prove that it can learn either the Nash equilibrium or coarse correlated equilibrium in a sample efficient manner.

Image forensics has become increasingly crucial in our daily lives. Among various types of forgeries, copy-move forgery detection has received considerable attention within the academic community. Keypoint-based algorithms, particularly those based on Scale Invariant Feature Transform, have achieved promising outcomes. However, most of keypoint detection algorithms failed to generate sufficient matches when tampered patches were occurred in smooth areas, leading to insufficient matches. Therefore, this paper introduces entropy images to determine the coordinates and scales of keypoints based on Scale Invariant Feature Transform detector, which make the pre-processing more suitable for solving the above problems. Furthermore, an overlapped entropy level clustering algorithm is developed to mitigate the increased matching complexity caused by the non-ideal distribution of gray values in keypoints. Experimental results demonstrate that our algorithm achieves a good balance between performance and time efficiency.

Smishing, also known as SMS phishing, is a type of fraudulent communication in which an attacker disguises SMS communications to deceive a target into providing their sensitive data. Smishing attacks use a variety of tactics; however, they have a similar goal of stealing money or personally identifying information (PII) from a victim. In response to these attacks, a wide variety of anti-smishing tools have been developed to block or filter these communications. Despite this, the number of phishing attacks continue to rise. In this paper, we developed a test bed for measuring the effectiveness of popular anti-smishing tools against fresh smishing attacks. To collect fresh smishing data, we introduce Smishtank.com, a collaborative online resource for reporting and collecting smishing data sets. The SMS messages were validated by a security expert and an in-depth qualitative analysis was performed on the collected messages to provide further insights. To compare tool effectiveness, we experimented with 20 smishing and benign messages across 3 key segments of the SMS messaging delivery ecosystem. Our results revealed significant room for improvement in all 3 areas against our smishing set. Most anti-phishing apps and bulk messaging services didn't filter smishing messages beyond the carrier blocking. The 2 apps that blocked the most smish also blocked 85-100\% of benign messages. Finally, while carriers did not block any benign messages, they were only able to reach a 25-35\% blocking rate for smishing messages. Our work provides insights into the performance of anti-smishing tools and the roles they play in the message blocking process. This paper would enable the research community and industry to be better informed on the current state of anti-smishing technology on the SMS platform.

Causal inference methods for observational data are highly regarded due to their wide applicability. While there are already numerous methods available for de-confounding bias, these methods generally assume that covariates consist solely of confounders or make naive assumptions about the covariates. Such assumptions face challenges in both theory and practice, particularly when dealing with high-dimensional covariates. Relaxing these naive assumptions and identifying the confounding covariates that truly require correction can effectively enhance the practical significance of these methods. Therefore, this paper proposes a General Causal Inference (GCI) framework specifically designed for cross-sectional observational data, which precisely identifies the key confounding covariates and provides corresponding identification algorithm. Specifically, based on progressive derivations of the Markov property on Directed Acyclic Graph, we conclude that the key confounding covariates are equivalent to the common root ancestors of the treatment and the outcome variable. Building upon this conclusion, the GCI framework is composed of a novel Ancestor Set Identification (ASI) algorithm and de-confounding inference methods. Firstly, the ASI algorithm is theoretically supported by the conditional independence properties and causal asymmetry between variables, enabling the identification of key confounding covariates. Subsequently, the identified confounding covariates are used in the de-confounding inference methods to obtain unbiased causal effect estimation, which can support informed decision-making. Extensive experiments on synthetic datasets demonstrate that the GCI framework can effectively identify the critical confounding covariates and significantly improve the precision, stability, and interpretability of causal inference in observational studies.

We explore how interaction with large language models (LLMs) can give rise to emergent behaviors, empowering players to participate in the evolution of game narratives. Our testbed is a text-adventure game in which players attempt to solve a mystery under a fixed narrative premise, but can freely interact with non-player characters generated by GPT-4, a large language model. We recruit 28 gamers to play the game and use GPT-4 to automatically convert the game logs into a node-graph representing the narrative in the player's gameplay. We find that through their interactions with the non-deterministic behavior of the LLM, players are able to discover interesting new emergent nodes that were not a part of the original narrative but have potential for being fun and engaging. Players that created the most emergent nodes tended to be those that often enjoy games that facilitate discovery, exploration and experimentation.

By Big-Thick data, we mean large-scale sensor data (big data) which provides an objective view of reality, coupled with thick data, i.e., data generated by people, which describes their subjective view of the reality described by big data. Big-thick data enables a machine understanding of human behavior and activities, as well as the human interpretation of what they are doing, i.e., their own personal descriptions of the why, what, and how. The goal of this short paper is to provide a high-level description of a platform, called i-Log, that enables the collection of big-thick data. Its core components are: tools for collecting sensor data as well as the user feedback (e.g., user answers to machine questions), and a dashboard which provides visual qualitative and quantitative feedback on how things are evolving, as well as suitable notifications to the user.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司