亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that the Wynn recurrence (the missing identity of Frobenius of the Pad\'{e} approximation theory) can be incorporated into the theory of integrable systems as a reduction of the discrete Schwarzian Kadomtsev-Petviashvili equation. This allows, in particular, to present the geometric meaning of the recurrence as a construction of the appropriately constrained quadrangular set of points. The interpretation is valid for a projective line over arbitrary skew field what motivates to consider non-commutative Pad\'{e} theory. We transfer the corresponding elements, including the Frobenius identities, to the non-commutative level using the quasideterminants. Using an example of the characteristic series of the Fibonacci language we present an application of the theory to the regular languages. We introduce the non-commutative version of the discrete-time Toda lattice equations together with their integrability structure. Finally, we discuss application of the Wynn recurrence in a different context of the geometric theory of discrete analytic functions.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

The world's digital information ecosystem continues to struggle with the spread of misinformation. Prior work has suggested that users who consistently disseminate a disproportionate amount of low-credibility content -- so-called superspreaders -- are at the center of this problem. We quantitatively confirm this hypothesis and introduce simple metrics to predict the top misinformation superspreaders several months into the future. We then conduct a qualitative review to characterize the most prolific superspreaders and analyze their sharing behaviors. Superspreaders include pundits with large followings, low-credibility media outlets, personal accounts affiliated with those media outlets, and a range of influencers. They are primarily political in nature and use more toxic language than the typical user sharing misinformation. We also find concerning evidence suggesting that Twitter may be overlooking prominent superspreaders. We hope this work will further public understanding of bad actors and promote steps to mitigate their negative impacts on healthy digital discourse.

We introduce a neural implicit framework that exploits the differentiable properties of neural networks and the discrete geometry of point-sampled surfaces to approximate them as the level sets of neural implicit functions. To train a neural implicit function, we propose a loss functional that approximates a signed distance function, and allows terms with high-order derivatives, such as the alignment between the principal directions of curvature, to learn more geometric details. During training, we consider a non-uniform sampling strategy based on the curvatures of the point-sampled surface to prioritize points with more geometric details. This sampling implies faster learning while preserving geometric accuracy when compared with previous approaches. We also present the analytical differential geometry formulas for neural surfaces, such as normal vectors and curvatures.

The ergodic decomposition theorem is a cornerstone result of dynamical systems and ergodic theory. It states that every invariant measure on a dynamical system is a mixture of ergodic ones. Here we formulate and prove the theorem in terms of string diagrams, using the formalism of Markov categories. We recover the usual measure-theoretic statement by instantiating our result in the category of stochastic kernels. Along the way we give a conceptual treatment of several concepts in the theory of deterministic and stochastic dynamical systems. In particular, - ergodic measures appear very naturally as particular cones of deterministic morphisms (in the sense of Markov categories); - the invariant $\sigma$-algebra of a dynamical system can be seen as a colimit in the category of Markov kernels. In line with other uses of category theory, once the necessary structures are in place, our proof of the main theorem is much simpler than traditional approaches. In particular, it does not use any quantitative limiting arguments, and it does not rely on the cardinality of the group or monoid indexing the dynamics. We hope that this result paves the way for further applications of category theory to dynamical systems, ergodic theory, and information theory.

The conventional room geometry blind inference techniques with acoustic signals are conducted based on the prior knowledge of the environment, such as the room impulse response (RIR) or the sound source position, which will limit its application under known scenarios. To solve this problem, we have proposed a room geometry reconstruction method in this paper by using the geometric relation between the direct signal and first-order reflections. In addition to the information of the compact microphone array itself, this method does not need any precognition of the environmental parameters. Besides, the learning-based DNN models are designed and used to improve the accuracy and integrity of the localization results of the direct source and first-order reflections. The direction of arrival (DOA) and time difference of arrival (TDOA) information of the direct and reflected signals are firstly estimated using the proposed DCNN and TD-CNN models, which have higher sensitivity and accuracy than the conventional methods. Then the position of the sound source is inferred by integrating the DOA, TDOA and array height using the proposed DNN model. After that, the positions of image sources and corresponding boundaries are derived based on the geometric relation. Experimental results of both simulations and real measurements verify the effectiveness and accuracy of the proposed techniques compared with the conventional methods under different reverberant environments.

Functors with an instance of the Traversable type class can be thought of as data structures which permit a traversal of their elements. This has been made precise by the correspondence between traversable functors and finitary containers (also known as polynomial functors) -- established in the context of total, necessarily terminating, functions. However, the Haskell language is non-strict and permits functions that do not terminate. It has long been observed that traversals can at times in fact operate over infinite lists, for example in distributing the Reader applicative. The result of such a traversal remains an infinite structure, however it nonetheless is productive -- i.e. successive amounts of finite computation yield either termination or successive results. To investigate this phenomenon, we draw on tools from guarded recursion, making use of equational reasoning directly in Haskell.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

北京阿比特科技有限公司