亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show how to translate a subset of RISC-V machine code compiled from a subset of C to quadratic unconstrained binary optimization (QUBO) models that can be solved by a quantum annealing machine: given a bound $n$, there is input $I$ to a program $P$ such that $P$ runs into a given program state $E$ executing no more than $n$ machine instructions if and only if the QUBO model of $P$ for $n$ evaluates to 0 on $I$. Thus, with more qubits on the machine than variables in the QUBO model, quantum annealing the model reaches 0 (ground) energy in constant time with high probability on some input $I$ that is part of the ground state if and only if $P$ runs into $E$ on $I$ executing no more than $n$ instructions. Translation takes $\mathcal{O}(n^2)$ time effectively turning a quantum annealer into a polynomial-time symbolic execution engine and bounded model checker, eliminating their path and state explosion problems. Here, we take advantage of the fact that any machine instruction may only increase the size of the program state by a constant amount of bits. Translation time comes down from $\mathcal{O}(n^2)$ to $\mathcal{O}(n\cdot|P|)$ if memory consumption of $P$ is bounded by a constant, establishing a linear (quadratic) upper bound on quantum space, in number of qubits on a quantum annealer, in terms of algorithmic time (space) in classical computing. Our prototypical open-source toolchain translates machine code that runs on real RISC-V hardware to models that can be solved by real quantum annealing hardware, as shown in our experiments.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · · Performer · FAST · 可辨認的 ·
2022 年 1 月 31 日

We propose quantum subroutines for the simplex method that avoid classical computation of the basis inverse. We show how to quantize all steps of the simplex algorithm, including checking optimality, unboundedness, and identifying a pivot (i.e., pricing the columns and performing the ratio test) according to Dantzig's rule or the steepest edge rule. The quantized subroutines obtain a polynomial speedup in the dimension of the problem, but have worse dependence on other numerical parameters. For example, for a problem with $m$ constraints, $n$ variables, at most $d_c$ nonzero elements per column of the costraint matrix, at most $d$ nonzero elements per column or row of the basis, basis condition number $\kappa$, and optimality tolerance $\epsilon$, pricing can be performed in $\tilde{O}(\frac{1}{\epsilon}\kappa d \sqrt{n}(d_c n + d m))$ time, where the $\tilde{O}$ notation hides polylogarithmic factors; classically, pricing requires $O(d_c^{0.7} m^{1.9} + m^{2 + o(1)} + d_c n)$ time in the worst case using the fastest known algorithm for sparse matrix multiplication. For well-conditioned sparse problems the quantum subroutines scale better in $m$ and $n$, and may therefore have an advantage for very large problems. The running time of the quantum subroutines can be improved if the constraint matrix admits an efficient algorithmic description, or if quantum RAM is available.

Fitting geometric models onto outlier contaminated data is provably intractable. Many computer vision systems rely on random sampling heuristics to solve robust fitting, which do not provide optimality guarantees and error bounds. It is therefore critical to develop novel approaches that can bridge the gap between exact solutions that are costly, and fast heuristics that offer no quality assurances. In this paper, we propose a hybrid quantum-classical algorithm for robust fitting. Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs and terminates with a global solution or an error bound. The combinatorial subproblems are amenable to a quantum annealer, which helps to tighten the bound efficiently. While our usage of quantum computing does not surmount the fundamental intractability of robust fitting, by providing error bounds our algorithm is a practical improvement over randomised heuristics. Moreover, our work represents a concrete application of quantum computing in computer vision. We present results obtained using an actual quantum computer (D-Wave Advantage) and via simulation. Source code: //github.com/dadung/HQC-robust-fitting

We contribute to fulfil the long-lasting gap in the understanding of the spatial search with multiple marked vertices. The theoretical framework is that of discrete-time quantum walks (QW), i.e. local unitary matrices that drive the evolution of a single particle on the lattice. QW based search algorithms are well understood when they have to tackle the fundamental problem of finding only one marked element in a $d-$dimensional grid and it has been proven they provide a quadratic advantage over classical searching protocols. However, once we consider to search more than one element, the behaviour of the algorithm may be affected by the spatial configuration of the marked elements, due to the quantum interference among themselves and even the quantum advantage is no longer granted. Here our main contribution is twofold : (i) we provide strong numerical evidence that spatial configurations are almost all optimal; and (ii) we analytically prove that the quantum advantage with respect to the classical counterpart is not always granted and it does depend on the proportion of searched elements over the total number of grid points $\tau$. We finally providing a clear phase diagram for the QW search advantage with respect to the classical random algorithm.

We exhibit a randomized algorithm which given a matrix $A\in \mathbb{C}^{n\times n}$ with $\|A\|\le 1$ and $\delta>0$, computes with high probability an invertible $V$ and diagonal $D$ such that $\|A-VDV^{-1}\|\le \delta$ using $O(T_{MM}(n)\log^2(n/\delta))$ arithmetic operations, in finite arithmetic with $O(\log^4(n/\delta)\log n)$ bits of precision. Here $T_{MM}(n)$ is the number of arithmetic operations required to multiply two $n\times n$ complex matrices numerically stably, known to satisfy $T_{MM}(n)=O(n^{\omega+\eta})$ for every $\eta>0$ where $\omega$ is the exponent of matrix multiplication (Demmel et al., Numer. Math., 2007). Our result significantly improves the previously best known provable running times of $O(n^{10}/\delta^2)$ arithmetic operations for diagonalization of general matrices (Armentano et al., J. Eur. Math. Soc., 2018), and (with regards to the dependence on $n$) $O(n^3)$ arithmetic operations for Hermitian matrices (Dekker and Traub, Lin. Alg. Appl., 1971). It is the first algorithm to achieve nearly matrix multiplication time for diagonalization in any model of computation (real arithmetic, rational arithmetic, or finite arithmetic), thereby matching the complexity of other dense linear algebra operations such as inversion and $QR$ factorization up to polylogarithmic factors. The proof rests on two new ingredients. (1) We show that adding a small complex Gaussian perturbation to any matrix splits its pseudospectrum into $n$ small well-separated components. In particular, this implies that the eigenvalues of the perturbed matrix have a large minimum gap, a property of independent interest in random matrix theory. (2) We give a rigorous analysis of Roberts' Newton iteration method (Roberts, Int. J. Control, 1980) for computing the sign function of a matrix in finite arithmetic, itself an open problem in numerical analysis since at least 1986.

The representation space of neural models for textual data emerges in an unsupervised manner during training. Understanding how human-interpretable concepts, such as gender, are encoded in these representations would improve the ability of users to \emph{control} the content of these representations and analyze the working of the models that rely on them. One prominent approach to the control problem is the identification and removal of linear concept subspaces -- subspaces in the representation space that correspond to a given concept. While those are tractable and interpretable, neural network do not necessarily represent concepts in linear subspaces. We propose a kernalization of the linear concept-removal objective of [Ravfogel et al. 2022], and show that it is effective in guarding against the ability of certain nonlinear adversaries to recover the concept. Interestingly, our findings suggest that the division between linear and nonlinear models is overly simplistic: when considering the concept of binary gender and its neutralization, we do not find a single kernel space that exclusively contains all the concept-related information. It is therefore challenging to protect against \emph{all} nonlinear adversaries at once.

Quantum computers have the unique ability to operate relatively quickly in high-dimensional spaces -- this is sought to give them a competitive advantage over classical computers. In this work, we propose a novel quantum machine learning model called the Quantum Discriminator, which leverages the ability of quantum computers to operate in the high-dimensional spaces. The quantum discriminator is trained using a quantum-classical hybrid algorithm in O(N logN) time, and inferencing is performed on a universal quantum computer in linear time. The quantum discriminator takes as input the binary features extracted from a given datum along with a prediction qubit initialized to the zero state and outputs the predicted label. We analyze its performance on the Iris data set and show that the quantum discriminator can attain 99% accuracy in simulation.

We study properties of secret sharing schemes, where a random secret value is transformed into shares distributed among several participants in such a way that only the qualified groups of participants can recover the secret value. We improve the lower bounds on the sizes of shares for several specific problems of secret sharing. To this end, we use the method of non-Shannon type information inequalities going back to Z. Zhang and R.W. Yeung. We extend and employ the linear programming technique that allows to apply new information inequalities indirectly, without even writing them down explicitly. To reduce the complexity of the problems of linear programming involved in the bounds we use extensively symmetry considerations.

The boundary operator is a linear operator that acts on a collection of high-dimensional binary points (simplices) and maps them to their boundaries. This boundary map is one of the key components in numerous applications, including differential equations, machine learning, computational geometry, machine vision and control systems. We consider the problem of representing the full boundary operator on a quantum computer. We first prove that the boundary operator has a special structure in the form of a complete sum of fermionic creation and annihilation operators. We then use the fact that these operators pairwise anticommute to produce an $\mathcal{O}(n)$-depth circuit that exactly implements the boundary operator without any Trotterization or Taylor series approximation errors. Having fewer errors reduces the number of shots required to obtain desired accuracies.

Kernel matrices, which arise from discretizing a kernel function $k(x,x')$, have a variety of applications in mathematics and engineering. Classically, the celebrated fast multipole method was designed to perform matrix multiplication on kernel matrices of dimension $N$ in time almost linear in $N$ by using techniques later generalized into the linear algebraic framework of hierarchical matrices. In light of this success, we propose a quantum algorithm for efficiently performing matrix operations on hierarchical matrices by implementing a quantum block-encoding of the hierarchical matrix structure. When applied to many kernel matrices, our quantum algorithm can solve quantum linear systems of dimension $N$ in time $O(\kappa \operatorname{polylog}(\frac{N}{\varepsilon}))$, where $\kappa$ and $\varepsilon$ are the condition number and error bound of the matrix operation. This runtime is exponentially faster than any existing quantum algorithms for implementing dense kernel matrices. Finally, we discuss possible applications of our methodology in solving integral equations or accelerating computations in N-body problems.

This paper studies the adversarial torn-paper channel. This problem is motivated by applications in DNA data storage where the DNA strands that carry the information may break into smaller pieces that are received out of order. Our model extends the previously researched probabilistic setting to the worst-case. We develop code constructions for any parameters of the channel for which non-vanishing asymptotic rate is possible and show our constructions achieve optimal asymptotic rate while allowing for efficient encoding and decoding. Finally, we extend our results to related settings included multi-strand storage, presence of substitution errors, or incomplete coverage.

北京阿比特科技有限公司