Excessive alcohol consumption causes disability and death. Digital interventions are promising means to promote behavioral change and thus prevent alcohol-related harm, especially in critical moments such as driving. This requires real-time information on a person's blood alcohol concentration (BAC). Here, we develop an in-vehicle machine learning system to predict critical BAC levels. Our system leverages driver monitoring cameras mandated in numerous countries worldwide. We evaluate our system with n=30 participants in an interventional simulator study. Our system reliably detects driving under any alcohol influence (area under the receiver operating characteristic curve [AUROC] 0.88) and driving above the WHO recommended limit of 0.05g/dL BAC (AUROC 0.79). Model inspection reveals reliance on pathophysiological effects associated with alcohol consumption. To our knowledge, we are the first to rigorously evaluate the use of driver monitoring cameras for detecting drunk driving. Our results highlight the potential of driver monitoring cameras and enable next-generation drunk driver interaction preventing alcohol-related harm.
Real-world data, such as administrative claims and electronic health records, are increasingly used for safety monitoring and to help guide regulatory decision-making. In these settings, it is important to document analytic decisions transparently and objectively to ensure that analyses meet their intended goals. The Causal Roadmap is an established framework that can guide and document analytic decisions through each step of the analytic pipeline, which will help investigators generate high-quality real-world evidence. In this paper, we illustrate the utility of the Causal Roadmap using two case studies previously led by workgroups sponsored by the Sentinel Initiative -- a program for actively monitoring the safety of regulated medical products. Each case example focuses on different aspects of the analytic pipeline for drug safety monitoring. The first case study shows how the Causal Roadmap encourages transparency, reproducibility, and objective decision-making for causal analyses. The second case study highlights how this framework can guide analytic decisions beyond inference on causal parameters, improving outcome ascertainment in clinical phenotyping. These examples provide a structured framework for implementing the Causal Roadmap in safety surveillance and guide transparent, reproducible, and objective analysis.
Cost-effective and responsible use of cloud computing resources (CCR) is on the business agenda of many companies. Despite this strategic goal, two geopolitical strategy decisions mainly influence the continuous existence of overcapacity: Europe's General Data Protection Regulation and the US's Cloud Act. Given the circumstances, a typical data center produces approximately 30% overcapacity annually. This overcapacity has severe environmental and economic consequences. Our work addresses this overcapacity by proposing a multi-sided platform for CCR trading. We initiate our research by conducting a literature review to explore the existing body of knowledge which indicates a lack of recent and evaluated platform design knowledge for CCR trading. We address this research gap by deriving design requirements and design principles. We instantiate and evaluate the design knowledge in a respective platform framework. Thus, we contribute to research and practice by deriving and evaluating design knowledge and proposing a platform framework.
Graph Neural Networks (GNNs) are a pertinent tool for any machine learning task due to their ability to learn functions over graph structures, a powerful and expressive data representation. The detection of communities, an unsupervised task has increasingly been performed with GNNs. Clustering nodes in a graph using the multi-dimensionality of node features with the connectivity of the graph has many applications to real world tasks from social networks to genomics. Unfortunately, there is currently a gap in the literature with no established sufficient benchmarking environment for fairly and rigorously evaluating GNN based community detection, thereby potentially impeding progress in this nascent field. We observe the particular difficulties in this setting is the ambiguous hyperparameter tuning environments combined with conflicting metrics of performance and evaluation datasets. In this work, we propose and evaluate frameworks for the consistent comparisons of community detection algorithms using GNNs. With this, we show the strong dependence of the performance to the experimental settings, exacerbated by factors such as the use of GNNs and the unsupervised nature of the task, providing clear motivation for the use of a framework to facilitate congruent research in the field.
Real-time perception and motion planning are two crucial tasks for autonomous driving. While there are many research works focused on improving the performance of perception and motion planning individually, it is still not clear how a perception error may adversely impact the motion planning results. In this work, we propose a joint simulation framework with LiDAR-based perception and motion planning for real-time automated driving. Taking the sensor input from the CARLA simulator with additive noise, a LiDAR perception system is designed to detect and track all surrounding vehicles and to provide precise orientation and velocity information. Next, we introduce a new collision bound representation that relaxes the communication cost between the perception module and the motion planner. A novel collision checking algorithm is implemented using line intersection checking that is more efficient for long distance range in comparing to the traditional method of occupancy grid. We evaluate the joint simulation framework in CARLA for urban driving scenarios. Experiments show that our proposed automated driving system can execute at 25 Hz, which meets the real-time requirement. The LiDAR perception system has high accuracy within 20 meters when evaluated with the ground truth. The motion planning results in consistent safe distance keeping when tested in CARLA urban driving scenarios.
Millimeter wave (mmWave) communications has been recently standardized for use in the fifth generation (5G) of cellular networks, fulfilling the promise of multi-gigabit mobile throughput of current and future mobile radio network generations. In this context, the network densification required to overcome the difficult mmWave propagation will result in increased deployment costs. Integrated Access and Backhaul (IAB) has been proposed as an effective mean of reducing densification costs by deploying a wireless mesh network of base stations, where backhaul and access transmissions share the same radio technology. However, IAB requires sophisticated control mechanisms to operate efficiently and address the increased complexity. The Open Radio Access Network (RAN) paradigm represents the ideal enabler of RAN intelligent control, but its current specifications are not compatible with IAB. In this work, we discuss the challenges of integrating IAB into the Open RAN ecosystem, detailing the required architectural extensions that will enable dynamic control of 5G IAB networks. We implement the proposed integrated architecture into the first publicly-available Open-RAN-enabled experimental framework, which allows prototyping and testing Open-RAN-based solutions over end-to-end 5G IAB networks. Finally, we validate the framework with both ideal and realistic deployment scenarios exploiting the large-scale testing capabilities of publicly available experimental platforms
Intelligent vehicles (IVs) have gained worldwide attention due to their increased convenience, safety advantages, and potential commercial value. Despite predictions of commercial deployment by 2025, implementation remains limited to small-scale validation, with precise tracking controllers and motion planners being essential prerequisites for IVs. This paper reviews state-of-the-art motion planning methods for IVs, including pipeline planning and end-to-end planning methods. The study examines the selection, expansion, and optimization operations in a pipeline method, while it investigates training approaches and validation scenarios for driving tasks in end-to-end methods. Experimental platforms are reviewed to assist readers in choosing suitable training and validation strategies. A side-by-side comparison of the methods is provided to highlight their strengths and limitations, aiding system-level design choices. Current challenges and future perspectives are also discussed in this survey.
Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.
Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.