亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an algorithm for the simulation of Hawkes-type processes where the intensity is expressed in terms of a continuous-time autoregressive moving average model. We identify upper bounds for both the univariate and the multivariate intensity functions that are used to develop simulation algorithms based on the thinning technique.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · PARCO · 可約的 · 相互獨立的 · 模型評估 ·
2024 年 3 月 18 日

In this paper, we combine the multiscale flnite element method to propose an algorithm for solving the non-stationary Stokes-Darcy model, where the permeability coefflcient in the Darcy region exhibits multiscale characteristics. Our algorithm involves two steps: first, conducting the parallel computation of multiscale basis functions in the Darcy region. Second, based on these multiscale basis functions, we employ an implicitexplicit scheme to solve the Stokes-Darcy equations. One signiflcant feature of the algorithm is that it solves problems on relatively coarse grids, thus signiflcantly reducing computational costs. Moreover, under the same coarse grid size, it exhibits higher accuracy compared to standard flnite element method. Under the assumption that the permeability coefflcient is periodic and independent of time, this paper demonstrates the stability and convergence of the algorithm. Finally, the rationality and effectiveness of the algorithm are verifled through three numerical experiments, with experimental results consistent with theoretical analysis.

When complex Bayesian models exhibit implausible behaviour, one solution is to assemble available information into an informative prior. Challenges arise as prior information is often only available for the observable quantity, or some model-derived marginal quantity, rather than directly pertaining to the natural parameters in our model. We propose a method for translating available prior information, in the form of an elicited distribution for the observable or model-derived marginal quantity, into an informative joint prior. Our approach proceeds given a parametric class of prior distributions with as yet undetermined hyperparameters, and minimises the difference between the supplied elicited distribution and corresponding prior predictive distribution. We employ a global, multi-stage Bayesian optimisation procedure to locate optimal values for the hyperparameters. Three examples illustrate our approach: a cure-fraction survival model, where censoring implies that the observable quantity is a priori a mixed discrete/continuous quantity; a setting in which prior information pertains to $R^{2}$ -- a model-derived quantity; and a nonlinear regression model.

We show that for log-concave real random variables with fixed variance the Shannon differential entropy is minimized for an exponential random variable. We apply this result to derive upper bounds on capacities of additive noise channels with log-concave noise. We also improve constants in the reverse entropy power inequalities for log-concave random variables.

Quantum computing has emerged as a promising avenue for achieving significant speedup, particularly in large-scale PDE simulations, compared to classical computing. One of the main quantum approaches involves utilizing Hamiltonian simulation, which is directly applicable only to Schr\"odinger-type equations. To address this limitation, Schr\"odingerisation techniques have been developed, employing the warped transformation to convert general linear PDEs into Schr\"odinger-type equations. However, despite the development of Schr\"odingerisation techniques, the explicit implementation of the corresponding quantum circuit for solving general PDEs remains to be designed. In this paper, we present detailed implementation of a quantum algorithm for general PDEs using Schr\"odingerisation techniques. We provide examples of the heat equation, and the advection equation approximated by the upwind scheme, to demonstrate the effectiveness of our approach. Complexity analysis is also carried out to demonstrate the quantum advantages of these algorithms in high dimensions over their classical counterparts.

We investigate a convective Brinkman--Forchheimer problem coupled with a heat transfer equation. The investigated model considers thermal diffusion and viscosity depending on the temperature. We prove the existence of a solution without restriction on the data and uniqueness when the solution is slightly smoother and the data is suitably restricted. We propose a finite element discretization scheme for the considered model and derive convergence results and a priori error estimates. Finally, we illustrate the theory with numerical examples.

In the present work, a new methodology is proposed for building surrogate parametric models of engineering systems based on modular assembly of pre-solved modules. Each module is a generic parametric solution considering parametric geometry, material and boundary conditions. By assembling these modules and satisfying continuity constraints at the interfaces, a parametric surrogate model of the full problem can be obtained. In the present paper, the PGD technique in connection with NURBS geometry representation is used to create a parametric model for each module. In this technique, the NURBS objects allow to map the governing boundary value problem from a parametric non-regular domain into a regular reference domain and the PGD is used to create a reduced model in the reference domain. In the assembly stage, an optimization problem is solved to satisfy the continuity constraints at the interfaces. The proposed procedure is based on the offline--online paradigm: the offline stage consists of creating multiple pre-solved modules which can be afterwards assembled in almost real-time during the online stage, enabling quick evaluations of the full system response. To show the potential of the proposed approach some numerical examples in heat conduction and structural plates under bending are presented.

Distillation is the task of replacing a complicated machine learning model with a simpler model that approximates the original [BCNM06,HVD15]. Despite many practical applications, basic questions about the extent to which models can be distilled, and the runtime and amount of data needed to distill, remain largely open. To study these questions, we initiate a general theory of distillation, defining PAC-distillation in an analogous way to PAC-learning [Val84]. As applications of this theory: (1) we propose new algorithms to extract the knowledge stored in the trained weights of neural networks -- we show how to efficiently distill neural networks into succinct, explicit decision tree representations when possible by using the ``linear representation hypothesis''; and (2) we prove that distillation can be much cheaper than learning from scratch, and make progress on characterizing its complexity.

Existing schemes for demonstrating quantum computational advantage are subject to various practical restrictions, including the hardness of verification and challenges in experimental implementation. Meanwhile, analog quantum simulators have been realized in many experiments to study novel physics. In this work, we propose a quantum advantage protocol based on single-step Feynman-Kitaev verification of an analog quantum simulation, in which the verifier need only run an $O(\lambda^2)$-time classical computation, and the prover need only prepare $O(1)$ samples of a history state and perform $O(\lambda^2)$ single-qubit measurements, for a security parameter $\lambda$. We also propose a near-term feasible strategy for honest provers and discuss potential experimental realizations.

Negation is an important perspective of knowledge representation. Existing negation methods are mainly applied in probability theory, evidence theory and complex evidence theory. As a generalization of evidence theory, random permutation sets theory may represent information more precisely. However, how to apply the concept of negation to random permutation sets theory has not been studied. In this paper, the negation of permutation mass function is proposed. Moreover, in the negation process, the convergence of proposed negation method is verified. The trends of uncertainty and dissimilarity after each negation operation are investigated. Numerical examples are used to demonstrate the rationality of the proposed method.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司