There is unison is the scientific community about human induced climate change. Despite this, we see the web awash with claims around climate change scepticism, thus driving the need for fact checking them but at the same time providing an explanation and justification for the fact check. Scientists and experts have been trying to address it by providing manually written feedback for these claims. In this paper, we try to aid them by automating generating explanation for a predicted veracity label for a claim by deploying the approach used in open domain question answering of a fusion in decoder augmented with retrieved supporting passages from an external knowledge. We experiment with different knowledge sources, retrievers, retriever depths and demonstrate that even a small number of high quality manually written explanations can help us in generating good explanations.
Digital learning platforms enable students to learn on a flexible and individual schedule as well as providing instant feedback mechanisms. The field of STEM education requires students to solve numerous training exercises to grasp underlying concepts. It is apparent that there are restrictions in current online education in terms of exercise diversity and individuality. Many exercises show little variance in structure and content, hindering the adoption of abstraction capabilities by students. This thesis proposes an approach to generate diverse, context rich word problems. In addition to requiring the generated language to be grammatically correct, the nature of word problems implies additional constraints on the validity of contents. The proposed approach is proven to be effective in generating valid word problems for mathematical statistics. The experimental results present a tradeoff between generation time and exercise validity. The system can easily be parametrized to handle this tradeoff according to the requirements of specific use cases.
The review process is essential to ensure the quality of publications. Recently, the increase of submissions for top venues in machine learning and NLP has caused a problem of excessive burden on reviewers and has often caused concerns regarding how this may not only overload reviewers, but also may affect the quality of the reviews. An automatic system for assisting with the reviewing process could be a solution for ameliorating the problem. In this paper, we explore automatic review summary generation for scientific papers. We posit that neural language models have the potential to be valuable candidates for this task. In order to test this hypothesis, we release a new dataset of scientific papers and their reviews, collected from papers published in the NeurIPS conference from 2013 to 2020. We evaluate state of the art neural summarization models, present initial results on the feasibility of automatic review summary generation, and propose directions for the future.
Explanations are well-known to improve recommender systems' transparency. These explanations may be local, explaining an individual recommendation, or global, explaining the recommender model in general. Despite their widespread use, there has been little investigation into the relative benefits of these two approaches. Do they provide the same benefits to users, or do they serve different purposes? We conducted a 30-participant exploratory study and a 30-participant controlled user study with a research-paper recommender system to analyze how providing participants local, global, or both explanations influences user understanding of system behavior. Our results provide evidence suggesting that both explanations are more helpful than either alone for explaining how to improve recommendations, yet both appeared less helpful than global alone for efficiency in identifying false positives and negatives. However, we note that the two explanation approaches may be better compared in the context of a higher-stakes or more opaque domain.
We present an overview of the second edition of the CheckThat! Lab at CLEF 2019. The lab featured two tasks in two different languages: English and Arabic. Task 1 (English) challenged the participating systems to predict which claims in a political debate or speech should be prioritized for fact-checking. Task 2 (Arabic) asked to (A) rank a given set of Web pages with respect to a check-worthy claim based on their usefulness for fact-checking that claim, (B) classify these same Web pages according to their degree of usefulness for fact-checking the target claim, (C) identify useful passages from these pages, and (D) use the useful pages to predict the claim's factuality. CheckThat! provided a full evaluation framework, consisting of data in English (derived from fact-checking sources) and Arabic (gathered and annotated from scratch) and evaluation based on mean average precision (MAP) and normalized discounted cumulative gain (nDCG) for ranking, and F1 for classification. A total of 47 teams registered to participate in this lab, and fourteen of them actually submitted runs (compared to nine last year). The evaluation results show that the most successful approaches to Task 1 used various neural networks and logistic regression. As for Task 2, learning-to-rank was used by the highest scoring runs for subtask A, while different classifiers were used in the other subtasks. We release to the research community all datasets from the lab as well as the evaluation scripts, which should enable further research in the important tasks of check-worthiness estimation and automatic claim verification.
Most existing work on automated fact checking is concerned with predicting the veracity of claims based on metadata, social network spread, language used in claims, and, more recently, evidence supporting or denying claims. A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process -- generating justifications for verdicts on claims. This paper provides the first study of how these explanations can be generated automatically based on available claim context, and how this task can be modelled jointly with veracity prediction. Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system. The results of a manual evaluation further suggest that the informativeness, coverage and overall quality of the generated explanations are also improved in the multi-task model.
Machine Learning models become increasingly proficient in complex tasks. However, even for experts in the field, it can be difficult to understand what the model learned. This hampers trust and acceptance, and it obstructs the possibility to correct the model. There is therefore a need for transparency of machine learning models. The development of transparent classification models has received much attention, but there are few developments for achieving transparent Reinforcement Learning (RL) models. In this study we propose a method that enables a RL agent to explain its behavior in terms of the expected consequences of state transitions and outcomes. First, we define a translation of states and actions to a description that is easier to understand for human users. Second, we developed a procedure that enables the agent to obtain the consequences of a single action, as well as its entire policy. The method calculates contrasts between the consequences of a policy derived from a user query, and of the learned policy of the agent. Third, a format for generating explanations was constructed. A pilot survey study was conducted to explore preferences of users for different explanation properties. Results indicate that human users tend to favor explanations about policy rather than about single actions.
Linguistic style is an essential part of written communication, with the power to affect both clarity and attractiveness. With recent advances in vision and language, we can start to tackle the problem of generating image captions that are both visually grounded and appropriately styled. Existing approaches either require styled training captions aligned to images or generate captions with low relevance. We develop a model that learns to generate visually relevant styled captions from a large corpus of styled text without aligned images. The core idea of this model, called SemStyle, is to separate semantics and style. One key component is a novel and concise semantic term representation generated using natural language processing techniques and frame semantics. In addition, we develop a unified language model that decodes sentences with diverse word choices and syntax for different styles. Evaluations, both automatic and manual, show captions from SemStyle preserve image semantics, are descriptive, and are style shifted. More broadly, this work provides possibilities to learn richer image descriptions from the plethora of linguistic data available on the web.
Given a knowledge base or KB containing (noisy) facts about common nouns or generics, such as "all trees produce oxygen" or "some animals live in forests", we consider the problem of inferring additional such facts at a precision similar to that of the starting KB. Such KBs capture general knowledge about the world, and are crucial for various applications such as question answering. Different from commonly studied named entity KBs such as Freebase, generics KBs involve quantification, have more complex underlying regularities, tend to be more incomplete, and violate the commonly used locally closed world assumption (LCWA). We show that existing KB completion methods struggle with this new task, and present the first approach that is successful. Our results demonstrate that external information, such as relation schemas and entity taxonomies, if used appropriately, can be a surprisingly powerful tool in this setting. First, our simple yet effective knowledge guided tensor factorization approach achieves state-of-the-art results on two generics KBs (80% precise) for science, doubling their size at 74%-86% precision. Second, our novel taxonomy guided, submodular, active learning method for collecting annotations about rare entities (e.g., oriole, a bird) is 6x more effective at inferring further new facts about them than multiple active learning baselines.
We propose the inverse problem of Visual question answering (iVQA), and explore its suitability as a benchmark for visuo-linguistic understanding. The iVQA task is to generate a question that corresponds to a given image and answer pair. Since the answers are less informative than the questions, and the questions have less learnable bias, an iVQA model needs to better understand the image to be successful than a VQA model. We pose question generation as a multi-modal dynamic inference process and propose an iVQA model that can gradually adjust its focus of attention guided by both a partially generated question and the answer. For evaluation, apart from existing linguistic metrics, we propose a new ranking metric. This metric compares the ground truth question's rank among a list of distractors, which allows the drawbacks of different algorithms and sources of error to be studied. Experimental results show that our model can generate diverse, grammatically correct and content correlated questions that match the given answer.
The task of event extraction has long been investigated in a supervised learning paradigm, which is bound by the number and the quality of the training instances. Existing training data must be manually generated through a combination of expert domain knowledge and extensive human involvement. However, due to drastic efforts required in annotating text, the resultant datasets are usually small, which severally affects the quality of the learned model, making it hard to generalize. Our work develops an automatic approach for generating training data for event extraction. Our approach allows us to scale up event extraction training instances from thousands to hundreds of thousands, and it does this at a much lower cost than a manual approach. We achieve this by employing distant supervision to automatically create event annotations from unlabelled text using existing structured knowledge bases or tables.We then develop a neural network model with post inference to transfer the knowledge extracted from structured knowledge bases to automatically annotate typed events with corresponding arguments in text.We evaluate our approach by using the knowledge extracted from Freebase to label texts from Wikipedia articles. Experimental results show that our approach can generate a large number of high quality training instances. We show that this large volume of training data not only leads to a better event extractor, but also allows us to detect multiple typed events.