亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an approach, Spectral Dynamics Embedding Control (SDEC), to optimal control for nonlinear stochastic systems. This method leverages an infinite-dimensional feature to linearly represent the state-action value function and exploits finite-dimensional truncation approximation for practical implementation. To characterize the effectiveness of these finite dimensional approximations, we provide an in-depth theoretical analysis to characterize the approximation error induced by the finite-dimension truncation and statistical error induced by finite-sample approximation in both policy evaluation and policy optimization. Our analysis includes two prominent kernel approximation methods: truncations onto random features and Nystrom features. We also empirically test the algorithm and compare the performance with Koopman-based, iLQR, and energy-based methods on a few benchmark problems.

相關內容

This paper presents a groundbreaking approach to causal inference by integrating continuous normalizing flows (CNFs) with parametric submodels, enhancing their geometric sensitivity and improving upon traditional Targeted Maximum Likelihood Estimation (TMLE). Our method employs CNFs to refine TMLE, optimizing the Cram\'er-Rao bound and transitioning from a predefined distribution $p_0$ to a data-driven distribution $p_1$. We innovate further by embedding Wasserstein gradient flows within Fokker-Planck equations, thus imposing geometric structures that boost the robustness of CNFs, particularly in optimal transport theory. Our approach addresses the disparity between sample and population distributions, a critical factor in parameter estimation bias. We leverage optimal transport and Wasserstein gradient flows to develop causal inference methodologies with minimal variance in finite-sample settings, outperforming traditional methods like TMLE and AIPW. This novel framework, centered on Wasserstein gradient flows, minimizes variance in efficient influence functions under distribution $p_t$. Preliminary experiments showcase our method's superiority, yielding lower mean-squared errors compared to standard flows, thereby demonstrating the potential of geometry-aware normalizing Wasserstein flows in advancing statistical modeling and inference.

We investigate the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution in a sequential setup. The aim is to jointly infer the true hypothesis and the true parameter while using on average as few samples as possible and keeping the detection and estimation errors below predefined levels. Based on mild assumptions on the underlying model, we propose an asymptotically optimal procedure, i.e., a procedure that becomes optimal when the tolerated detection and estimation error levels tend to zero. The implementation of the resulting asymptotically optimal stopping rule is computationally cheap and, hence, applicable for high-dimensional data. We further propose a projected quasi-Newton method to optimally choose the coefficients that parameterize the instantaneous cost function such that the constraints are fulfilled with equality. The proposed theory is validated by numerical examples.

Extended Vision techniques are ubiquitous in physics. However, the data cubes steaming from such analysis often pose a challenge in their interpretation, due to the intrinsic difficulty in discerning the relevant information from the spectra composing the data cube. Furthermore, the huge dimensionality of data cube spectra poses a complex task in its statistical interpretation; nevertheless, this complexity contains a massive amount of statistical information that can be exploited in an unsupervised manner to outline some essential properties of the case study at hand, e.g.~it is possible to obtain an image segmentation via (deep) clustering of data-cube's spectra, performed in a suitably defined low-dimensional embedding space. To tackle this topic, we explore the possibility of applying unsupervised clustering methods in encoded space, i.e. perform deep clustering on the spectral properties of datacube pixels. A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, in charge of mapping spectra into lower dimensional metric spaces, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm. We apply this technique to two different use cases, of different physical origins: a set of Macro mapping X-Ray Fluorescence (MA-XRF) synthetic data on pictorial artworks, and a dataset of simulated astrophysical observations.

This paper presents an algorithm, called BCM-Broadcast, for the implementation of causal broadcast in distributed mobile systems in the presence of Byzantine failures. The BCM-Broadcast algorithm simultaneously focuses on three critical challenges in distributed systems: Byzantine failures, Causality, and Mobility. We first present a hierarchical architecture for BCM-Broadcast. Then, we define twelve properties for BCM-Broadcast, including validity, integrity, termination, and causality. We then show that BCM-Broadcast satisfies all these properties. We also prove the safety of BCM-Broadcast; i.e., no healthy process delivers a message from any Byzantine process, assuming that the number of Byzantine processes is less than a third of the total number of mobile nodes. Subsequently, we show that the message complexity of BCM-Broadcast is linear. Finally, using the Poisson process, we analyze the probability of the violation of the safety condition under different mobility scenarios.

This paper uses topological data analysis (TDA) tools and introduces a data-driven clustering-based stock selection strategy tailored for sparse portfolio construction. Our asset selection strategy exploits the topological features of stock price movements to select a subset of topologically similar (different) assets for a sparse index tracking (Markowitz) portfolio. We introduce new distance measures, which serve as an input to the clustering algorithm, on the space of persistence diagrams and landscapes that consider the time component of a time series. We conduct an empirical analysis on the S\&P index from 2009 to 2020, including a study on the COVID-19 data to validate the robustness of our methodology. Our strategy to integrate TDA with the clustering algorithm significantly enhanced the performance of sparse portfolios across various performance measures in diverse market scenarios.

Embedding methods transform the knowledge graph into a continuous, low-dimensional space, facilitating inference and completion tasks. Existing methods are mainly divided into two types: translational distance models and semantic matching models. A key challenge in translational distance models is their inability to effectively differentiate between 'head' and 'tail' entities in graphs. To address this problem, a novel location-sensitive embedding (LSE) method has been developed. LSE innovatively modifies the head entity using relation-specific mappings, conceptualizing relations as linear transformations rather than mere translations. The theoretical foundations of LSE, including its representational capabilities and its connections to existing models, have been thoroughly examined. A more streamlined variant, LSE-d, which employs a diagonal matrix for transformations to enhance practical efficiency, is also proposed. Experiments conducted on four large-scale KG datasets for link prediction show that LSEd either outperforms or is competitive with state-of-the-art related works.

Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models. Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering. However, clustering errors are inevitable. To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID. Specifically, before clustering, the relation between unlabeled images is explored based on a graph correlation learning (GCL) module and the refined features are then used for clustering to generate high-quality pseudo-labels.Thus, GCL adaptively mines the relationship between samples in a mini-batch to reduce the impact of abnormal clustering when training. To train the network more effectively, we further propose a selective contrastive learning (SCL) method with a selective memory bank update policy. Extensive experiments demonstrate that our method shows much better results than most state-of-the-art unsupervised methods on Market1501, DukeMTMC-reID and MSMT17 datasets. We will release the code for model reproduction.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

This paper learns a graphical model, namely an explanatory graph, which reveals the knowledge hierarchy hidden inside a pre-trained CNN. Considering that each filter in a conv-layer of a pre-trained CNN usually represents a mixture of object parts, we propose a simple yet efficient method to automatically disentangles different part patterns from each filter, and construct an explanatory graph. In the explanatory graph, each node represents a part pattern, and each edge encodes co-activation relationships and spatial relationships between patterns. More importantly, we learn the explanatory graph for a pre-trained CNN in an unsupervised manner, i.e., without a need of annotating object parts. Experiments show that each graph node consistently represents the same object part through different images. We transfer part patterns in the explanatory graph to the task of part localization, and our method significantly outperforms other approaches.

北京阿比特科技有限公司