The wireless channel is undergoing continuous changes, and the block-fading assumption, despite its popularity in theoretical contexts, never holds true in practical scenarios. This discrepancy is particularly critical for user activity detection in grant-free random access, where joint processing across multiple resource blocks is usually undesirable. In this paper, we propose employing a low-dimensional approximation of the channel to capture variations over time and frequency and robustify activity detection algorithms. This approximation entails projecting channel fading vectors onto their principal directions to minimize the approximation order. Through numerical examples, we demonstrate a substantial performance improvement achieved by the resulting activity detection algorithm.
Methods that use neural networks for synthesizing 3D shapes in the form of a part-based representation have been introduced over the last few years. These methods represent shapes as a graph or hierarchy of parts and enable a variety of applications such as shape sampling and reconstruction. However, current methods do not allow easily regenerating individual shape parts according to user preferences. In this paper, we investigate techniques that allow the user to generate multiple, diverse suggestions for individual parts. Specifically, we experiment with multimodal deep generative models that allow sampling diverse suggestions for shape parts and focus on models which have not been considered in previous work on shape synthesis. To provide a comparative study of these techniques, we introduce a method for synthesizing 3D shapes in a part-based representation and evaluate all the part suggestion techniques within this synthesis method. In our method, which is inspired by previous work, shapes are represented as a set of parts in the form of implicit functions which are then positioned in space to form the final shape. Synthesis in this representation is enabled by a neural network architecture based on an implicit decoder and a spatial transformer. We compare the various multimodal generative models by evaluating their performance in generating part suggestions. Our contribution is to show with qualitative and quantitative evaluations which of the new techniques for multimodal part generation perform the best and that a synthesis method based on the top-performing techniques allows the user to more finely control the parts that are generated in the 3D shapes while maintaining high shape fidelity when reconstructing shapes.
Remote sensing shadow removal, which aims to recover contaminated surface information, is tricky since shadows typically display overwhelmingly low illumination intensities. In contrast, the infrared image is robust toward significant light changes, providing visual clues complementary to the visible image. Nevertheless, the existing methods ignore the collaboration between heterogeneous modalities, leading to undesired quality degradation. To fill this gap, we propose a weakly supervised shadow removal network with a spherical feature space, dubbed S2-ShadowNet, to explore the best of both worlds for visible and infrared modalities. Specifically, we employ a modal translation (visible-to-infrared) model to learn the cross-domain mapping, thus generating realistic infrared samples. Then, Swin Transformer is utilized to extract strong representational visible/infrared features. Simultaneously, the extracted features are mapped to the smooth spherical manifold, which alleviates the domain shift through regularization. Well-designed similarity loss and orthogonality loss are embedded into the spherical space, prompting the separation of private visible/infrared features and the alignment of shared visible/infrared features through constraints on both representation content and orientation. Such a manner encourages implicit reciprocity between modalities, thus providing a novel insight into shadow removal. Notably, ground truth is not available in practice, thus S2-ShadowNet is trained by cropping shadow and shadow-free patches from the shadow image itself, avoiding stereotypical and strict pair data acquisition. More importantly, we contribute a large-scale weakly supervised shadow removal benchmark, including 4000 shadow images with corresponding shadow masks.
Bilevel optimization (BO) has recently gained prominence in many machine learning applications due to its ability to capture the nested structure inherent in these problems. Recently, many hypergradient methods have been proposed as effective solutions for solving large-scale problems. However, current hypergradient methods for the lower-level constrained bilevel optimization (LCBO) problems need very restrictive assumptions, namely, where optimality conditions satisfy the differentiability and invertibility conditions and lack a solid analysis of the convergence rate. What's worse, existing methods require either double-loop updates, which are sometimes less efficient. To solve this problem, in this paper, we propose a new hypergradient of LCBO leveraging the theory of nonsmooth implicit function theorem instead of using the restrive assumptions. In addition, we propose a \textit{single-loop single-timescale} algorithm based on the double-momentum method and adaptive step size method and prove it can return a $(\delta, \epsilon)$-stationary point with $\tilde{\mathcal{O}}(d_2^2\epsilon^{-4})$ iterations. Experiments on two applications demonstrate the effectiveness of our proposed method.
We consider a truthful facility location problem in which there is a set of agents with private locations on the line of real numbers, and the goal is to place a number of facilities at different locations chosen from the set of those reported by the agents. Given a feasible solution, each agent suffers an individual cost that is either its total distance to all facilities (sum-variant) or its distance to the farthest facility (max-variant). For both variants, we show tight bounds on the approximation ratio of strategyproof mechanisms in terms of the social cost, the total individual cost of the agents.
We analyze a number of natural estimators for the optimal transport map between two distributions and show that they are minimax optimal. We adopt the plugin approach: our estimators are simply optimal couplings between measures derived from our observations, appropriately extended so that they define functions on $\mathbb{R}^d$. When the underlying map is assumed to be Lipschitz, we show that computing the optimal coupling between the empirical measures, and extending it using linear smoothers, already gives a minimax optimal estimator. When the underlying map enjoys higher regularity, we show that the optimal coupling between appropriate nonparametric density estimates yields faster rates. Our work also provides new bounds on the risk of corresponding plugin estimators for the quadratic Wasserstein distance, and we show how this problem relates to that of estimating optimal transport maps using stability arguments for smooth and strongly convex Brenier potentials. As an application of our results, we derive central limit theorems for plugin estimators of the squared Wasserstein distance, which are centered at their population counterpart when the underlying distributions have sufficiently smooth densities. In contrast to known central limit theorems for empirical estimators, this result easily lends itself to statistical inference for the quadratic Wasserstein distance.
It was recently conjectured that every component of a discrete-time rational dynamical system is a solution to an algebraic difference equation that is linear in its highest-shift term (a quasi-linear equation). We prove that the conjecture holds in the special case of holonomic sequences, which can straightforwardly be represented by rational dynamical systems. We propose two algorithms for converting holonomic recurrence equations into such quasi-linear equations. The two algorithms differ in their efficiency and the minimality of orders in their outputs.
Among the variety of statistical intervals, highest-density regions (HDRs) stand out for their ability to effectively summarize a distribution or sample, unveiling its distinctive and salient features. An HDR represents the minimum size set that satisfies a certain probability coverage, and current methods for their computation require knowledge or estimation of the underlying probability distribution or density $f$. In this work, we illustrate a broader framework for computing HDRs, which generalizes the classical density quantile method introduced in the seminal paper of Hyndman (1996). The framework is based on neighbourhood measures, i.e., measures that preserve the order induced in the sample by $f$, and include the density $f$ as a special case. We explore a number of suitable distance-based measures, such as the $k$-nearest neighborhood distance, and some probabilistic variants based on copula models. An extensive comparison is provided, showing the advantages of the copula-based strategy, especially in those scenarios that exhibit complex structures (e.g., multimodalities or particular dependencies). Finally, we discuss the practical implications of our findings for estimating HDRs in real-world applications.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.