亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the contraction properties of locally differentially private mechanisms. More specifically, we derive tight upper bounds on the divergence between $PK$ and $QK$ output distributions of an $\epsilon$-LDP mechanism $K$ in terms of a divergence between the corresponding input distributions $P$ and $Q$, respectively. Our first main technical result presents a sharp upper bound on the $\chi^2$-divergence $\chi^2(PK\|QK)$ in terms of $\chi^2(P\|Q)$ and $\epsilon$. We also show that the same result holds for a large family of divergences, including KL-divergence and squared Hellinger distance. The second main technical result gives an upper bound on $\chi^2(PK\|QK)$ in terms of total variation distance $TV(P, Q)$ and $\epsilon$. We then utilize these bounds to establish locally private versions of the Cram\'er-Rao bound, Le Cam's, Assouad's, and the mutual information methods, which are powerful tools for bounding minimax estimation risks. These results are shown to lead to better privacy analyses than the state-of-the-arts in several statistical problems such as entropy and discrete distribution estimation, non-parametric density estimation, and hypothesis testing.

相關內容

We develop the theoretical foundations of a generalized Gromov-Hausdorff distance between functions on networks that has recently been applied to various subfields of topological data analysis and optimal transport. These functional representations of networks, or networks for short, specialize in the finite setting to (possibly asymmetric) adjacency matrices and derived representations such as distance or kernel matrices. Existing literature utilizing these constructions cannot, however, benefit from continuous formulations because the continuum limits of finite networks under this distance are not well-understood. For example, while there are currently numerous persistent homology methods on finite networks, it is unclear if these methods produce well-defined persistence diagrams in the infinite setting. We resolve this situation by introducing the collection of compact networks that arises by taking continuum limits of finite networks and developing sampling results showing that this collection admits well-defined persistence diagrams. Compared to metric spaces, the isomorphism class of the generalized Gromov-Hausdorff distance over networks is rather complex, and contains representatives having different cardinalities and different topologies. We provide an exact characterization of a suitable notion of isomorphism for compact networks as well as alternative, stronger characterizations under additional topological regularity assumptions. Toward data applications, we describe a unified framework for developing quantitatively stable network invariants, provide basic examples, and cast existing results on the stability of persistent homology methods in this extended framework. To illustrate our theoretical results, we introduce a model of directed circles with finite reversibility and characterize their Dowker persistence diagrams.

This paper proposes a new algorithm for an automatic variable selection procedure in High Dimensional Graphical Models. The algorithm selects the relevant variables for the node of interest on the basis of mutual information. Several contributions in literature have investigated the use of mutual information in selecting the appropriate number of relevant features in a large data-set, but most of them have focused on binary outcomes or required high computational effort. The algorithm here proposed overcomes these drawbacks as it is an extension of Chow and Liu's algorithm. Once, the probabilistic structure of a High Dimensional Graphical Model is determined via the said algorithm, the best path-step, including variables with the most explanatory/predictive power for a variable of interest, is determined via the computation of the entropy coefficient of determination. The latter, being based on the notion of (symmetric) Kullback-Leibler divergence, turns out to be closely connected to the mutual information of the involved variables. The application of the algorithm to a wide range of real-word and publicly data-sets has highlighted its potential and greater effectiveness compared to alternative extant methods.

We reexamine the characterization of incentive compatible single-parameter mechanisms introduced in Archer & Tardos(2001). We argue that the claimed uniqueness result, called `Myerson's Lemma' was not well established. We provide an elementary proof of uniqueness that unifies the presentation for two classes of allocation functions used in the literature and show that the general case is a consequence of a little known result from the theory of real functions. We also clarify that our proof of uniqueness is more elementary than the previous one. Finally, by generalizing our characterization result to more dimensions, we provide alternative proofs of revenue equivalence results for multiunit auctions and combinatorial auctions.

In this paper I discuss the relation between the concept of the Fisher metric and the concept of differentiability of a family of probability measures. I compare the concepts of smooth statistical manifolds, differentiable families of measures, $k$-integrable parameterized measure models, diffeological statistical models, differentiable measures, which arise in Information Geometry, mathematical statistics and measure theory, and discuss some related problems.

We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successive elimination algorithm for strictly optimal best-arm identification, we show that our algorithm is $\delta$-PAC and we characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem, as we show when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support-size, and we characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.

An increasingly important data analytic challenge is understanding the relationships between subpopulations. Various visualization methods that provide many useful insights into those relationships are popular, especially in bioinformatics. This paper proposes a novel and rigorous approach to quantifying subpopulation relationships called the Population Difference Criterion (PDC). PDC is simultaneously a quantitative and visual approach to showing separation of subpopulations. It uses subpopulation centers, the respective variation about those centers and the relative subpopulation sizes. This is accomplished by drawing motivation for the PDC from classical permutation based hypothesis testing, while taking that type of idea into non-standard conceptual territory. In particular, the domain of very small P values is seen to seem to provide useful comparisons of data sets. Simulated permutation variation is carefully investigated, and we found that a balanced permutation approach is more informative in high signal (i.e large subpopulation difference) contexts, than conventional approaches based on all permutations. This result is quite surprising in view of related work done in low signal contexts, which came to the opposite conclusion. This issue is resolved by the proposal of an appropriate adjustment. Permutation variation is also quantified by a proposed bootstrap confidence interval, and demonstrated to be useful in understanding subpopulation relationships with cancer data.

Planning is one of the main approaches used to improve agents' working efficiency by making plans beforehand. However, during planning, agents face the risk of having their private information leaked. This paper proposes a novel strong privacy-preserving planning approach for logistic-like problems. This approach outperforms existing approaches by addressing two challenges: 1) simultaneously achieving strong privacy, completeness and efficiency, and 2) addressing communication constraints. These two challenges are prevalent in many real-world applications including logistics in military environments and packet routing in networks. To tackle these two challenges, our approach adopts the differential privacy technique, which can both guarantee strong privacy and control communication overhead. To the best of our knowledge, this paper is the first to apply differential privacy to the field of multi-agent planning as a means of preserving the privacy of agents for logistic-like problems. We theoretically prove the strong privacy and completeness of our approach and empirically demonstrate its efficiency. We also theoretically analyze the communication overhead of our approach and illustrate how differential privacy can be used to control it.

Most published work on differential privacy (DP) focuses exclusively on meeting privacy constraints, by adding to the query noise with a pre-specified parametric distribution model, typically with one or two degrees of freedom. The accuracy of the response and its utility to the intended use are frequently overlooked. Considering that several database queries are categorical in nature (e.g., a label, a ranking, etc.), or can be quantized, the parameters that define the randomized mechanism's distribution are finite. Thus, it is reasonable to search through numerical optimization for the probability masses that meet the privacy constraints while minimizing the query distortion. Considering the modulo summation of random noise as the DP mechanism, the goal of this paper is to introduce a tractable framework to design the optimum noise probability mass function (PMF) for database queries with a discrete and finite set, optimizing with an expected distortion metric for a given $(\epsilon,\delta)$. We first show that the optimum PMF can be obtained by solving a mixed integer linear program (MILP). Then, we derive closed-form solutions for the optimum PMF that minimize the probability of error for two special cases. We show numerically that the proposed optimal mechanisms significantly outperform the state-of-the-art.

Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司