亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study fast first-order algorithms that approximately solve linear programs (LPs). More specifically, we apply algorithms from online linear programming to offline LPs and derive algorithms that are free of any matrix multiplication. To further improve the applicability of the proposed methods, we propose a variable-duplication technique that achieves $\mathcal{O}(\sqrt{mn/K})$ optimality gap by copying each variable $K$ times. Moreover, we identify that online algorithms can be efficiently incorporated into a column generation framework for large-scale LPs. Finally, numerical experiments show that our proposed methods can be applied either as an approximate direct solver or as an initialization subroutine in frameworks of exact LP solving.

相關內容

We show that strong duality for conic linear programming directly implies the minimax theorem for a wide class of infinite two-player zero-sum games. In fact, for every two-player zero-sum game with "cone-leveled" strategy sets, or more generally with strategy sets that can be written as unions of "cone-leveled" subsets, its game value and (approximate) optimal strategies can be calculated by solving a primal-dual pair of conic linear problems. The original result proven by von Neumann is therefore naturally generalized to the infinite-dimensional case, and a strong, rigorous connection between infinite two-player zero-sum games and mathematical programming is established.

Numerous physics theories are rooted in partial differential equations (PDEs). However, the increasingly intricate physics equations, especially those that lack analytic solutions or closed forms, have impeded the further development of physics. Computationally solving PDEs by classic numerical approaches suffers from the trade-off between accuracy and efficiency and is not applicable to the empirical data generated by unknown latent PDEs. To overcome this challenge, we present KoopmanLab, an efficient module of the Koopman neural operator family, for learning PDEs without analytic solutions or closed forms. Our module consists of multiple variants of the Koopman neural operator (KNO), a kind of mesh-independent neural-network-based PDE solvers developed following dynamic system theory. The compact variants of KNO can accurately solve PDEs with small model sizes while the large variants of KNO are more competitive in predicting highly complicated dynamic systems govern by unknown, high-dimensional, and non-linear PDEs. All variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation in fluid mechanics) and ERA5 (i.e., one of the largest high-resolution global-scale climate data sets in earth physics). These demonstrations suggest the potential of KoopmanLab to be a fundamental tool in diverse physics studies related to equations or dynamic systems.

We study the hidden-action principal-agent problem in an online setting. In each round, the principal posts a contract that specifies the payment to the agent based on each outcome. The agent then makes a strategic choice of action that maximizes her own utility, but the action is not directly observable by the principal. The principal observes the outcome and receives utility from the agent's choice of action. Based on past observations, the principal dynamically adjusts the contracts with the goal of maximizing her utility. We introduce an online learning algorithm and provide an upper bound on its Stackelberg regret. We show that when the contract space is $[0,1]^m$, the Stackelberg regret is upper bounded by $\widetilde O(\sqrt{m} \cdot T^{1-1/(2m+1)})$, and lower bounded by $\Omega(T^{1-1/(m+2)})$, where $\widetilde O$ omits logarithmic factors. This result shows that exponential-in-$m$ samples are sufficient and necessary to learn a near-optimal contract, resolving an open problem on the hardness of online contract design. Moreover, when contracts are restricted to some subset $\mathcal{F} \subset [0,1]^m$, we define an intrinsic dimension of $\mathcal{F}$ that depends on the covering number of the spherical code in the space and bound the regret in terms of this intrinsic dimension. When $\mathcal{F}$ is the family of linear contracts, we show that the Stackelberg regret grows exactly as $\Theta(T^{2/3})$. The contract design problem is challenging because the utility function is discontinuous. Bounding the discretization error in this setting has been an open problem. In this paper, we identify a limited set of directions in which the utility function is continuous, allowing us to design a new discretization method and bound its error. This approach enables the first upper bound with no restrictions on the contract and action space.

This paper develops efficient preconditioned iterative solvers for incompressible flow problems discretised by an enriched Taylor-Hood mixed approximation, in which the usual pressure space is augmented by a piecewise constant pressure to ensure local mass conservation. This enrichment process causes over-specification of the pressure, which complicates the design and implementation of efficient solvers for the resulting linear systems. We first describe the impact of this choice of pressure space on the matrices involved. Next, we show how to recover effective solvers for Stokes problems, with a preconditioner based on the singular pressure mass matrix, and for Oseen systems arising from linearised Navier-Stokes equations, by using a two-stage pressure convection-diffusion strategy. The codes used to generate the numerical results are available online.

The coresets approach, also called subsampling or subset selection, aims to select a subsample as a surrogate for the observed sample. Such an approach has been used pervasively in large-scale data analysis. Existing coresets methods construct the subsample using a subset of rows from the predictor matrix. Such methods can be significantly inefficient when the predictor matrix is sparse or numerically sparse. To overcome the limitation, we develop a novel element-wise subset selection approach, called core-elements, for large-scale least squares estimation in classical linear regression. We provide a deterministic algorithm to construct the core-elements estimator, only requiring an $O(\mbox{nnz}(\mathbf{X})+rp^2)$ computational cost, where $\mathbf{X}$ is an $n\times p$ predictor matrix, $r$ is the number of elements selected from each column of $\mathbf{X}$, and $\mbox{nnz}(\cdot)$ denotes the number of non-zero elements. Theoretically, we show that the proposed estimator is unbiased and approximately minimizes an upper bound of the estimation variance. We also provide an approximation guarantee by deriving a coresets-like finite sample bound for the proposed estimator. To handle potential outliers in the data, we further combine core-elements with the median-of-means procedure, resulting in an efficient and robust estimator with theoretical consistency guarantees. Numerical studies on various synthetic and open-source datasets demonstrate the proposed method's superior performance compared to mainstream competitors.

Embedding discrete solvers as differentiable layers has given modern deep learning architectures combinatorial expressivity and discrete reasoning capabilities. The derivative of these solvers is zero or undefined, therefore a meaningful replacement is crucial for effective gradient-based learning. Prior works rely on smoothing the solver with input perturbations, relaxing the solver to continuous problems, or interpolating the loss landscape with techniques that typically require additional solver calls, introduce extra hyper-parameters, or compromise performance. We propose a principled approach to exploit the geometry of the discrete solution space to treat the solver as a negative identity on the backward pass and further provide a theoretical justification. Our experiments demonstrate that such a straightforward hyper-parameter-free approach is able to compete with previous more complex methods on numerous experiments such as backpropagation through discrete samplers, deep graph matching, and image retrieval. Furthermore, we substitute the previously proposed problem-specific and label-dependent margin with a generic regularization procedure that prevents cost collapse and increases robustness.

Topology Optimization seeks to find the best design that satisfies a set of constraints while maximizing system performance. Traditional iterative optimization methods like SIMP can be computationally expensive and get stuck in local minima, limiting their applicability to complex or large-scale problems. Learning-based approaches have been developed to accelerate the topology optimization process, but these methods can generate designs with floating material and low performance when challenged with out-of-distribution constraint configurations. Recently, deep generative models, such as Generative Adversarial Networks and Diffusion Models, conditioned on constraints and physics fields have shown promise, but they require extensive pre-processing and surrogate models for improving performance. To address these issues, we propose a Generative Optimization method that integrates classic optimization like SIMP as a refining mechanism for the topology generated by a deep generative model. We also remove the need for conditioning on physical fields using a computationally inexpensive approximation inspired by classic ODE solutions and reduce the number of steps needed to generate a feasible and performant topology. Our method allows us to efficiently generate good topologies and explicitly guide them to regions with high manufacturability and high performance, without the need for external auxiliary models or additional labeled data. We believe that our method can lead to significant advancements in the design and optimization of structures in engineering applications, and can be applied to a broader spectrum of performance-aware engineering design problems.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

北京阿比特科技有限公司