Basic algebraic and combinatorial properties of finite vector spaces in which individual vectors are allowed to have multiplicities larger than $ 1 $ are derived. An application in coding theory is illustrated by showing that multispace codes that are introduced here may be used in random linear network coding scenarios, and that they in fact generalize standard subspace codes (defined in the set of all subspaces of $ \mathbb{F}_q^n $) and extend them to an infinitely larger set of parameters. In particular, in contrast to subspace codes, multispace codes of arbitrarily large cardinality and minimum distance exist for any fixed $ n $ and $ q $.
Bayesian optimization has been successfully applied to optimize black-box functions where the number of evaluations is severely limited. However, in many real-world applications, it is hard or impossible to know in advance which designs are feasible due to some physical or system limitations. These issues lead to an even more challenging problem of optimizing an unknown function with unknown constraints. In this paper, we observe that in such scenarios optimal solution typically lies on the boundary between feasible and infeasible regions of the design space, making it considerably more difficult than that with interior optima. Inspired by this observation, we propose BE-CBO, a new Bayesian optimization method that efficiently explores the boundary between feasible and infeasible designs. To identify the boundary, we learn the constraints with an ensemble of neural networks that outperform the standard Gaussian Processes for capturing complex boundaries. Our method demonstrates superior performance against state-of-the-art methods through comprehensive experiments on synthetic and real-world benchmarks.
Ordinary differential equations (ODEs) underlie dynamical systems which serve as models for a vast number of natural and social phenomena. Yet inferring the ODE that best describes a set of noisy observations on one such phenomenon can be remarkably challenging, and the models available to achieve it tend to be highly specialized and complex too. In this work we propose a novel supervised learning framework for zero-shot inference of ODEs from noisy data. We first generate large datasets of one-dimensional ODEs, by sampling distributions over the space of initial conditions, and the space of vector fields defining them. We then learn neural maps between noisy observations on the solutions of these equations, and their corresponding initial condition and vector fields. The resulting models, which we call foundational inference models (FIM), can be (i) copied and matched along the time dimension to increase their resolution; and (ii) copied and composed to build inference models of any dimensionality, without the need of any finetuning. We use FIM to model both ground-truth dynamical systems of different dimensionalities and empirical time series data in a zero-shot fashion, and outperform state-of-the-art models which are finetuned to these systems. Our (pretrained) FIMs are available online
Score-based generative models are a popular class of generative modelling techniques relying on stochastic differential equations (SDE). From their inception, it was realized that it was also possible to perform generation using ordinary differential equations (ODE) rather than SDE. This led to the introduction of the probability flow ODE approach and denoising diffusion implicit models. Flow matching methods have recently further extended these ODE-based approaches and approximate a flow between two arbitrary probability distributions. Previous work derived bounds on the approximation error of diffusion models under the stochastic sampling regime, given assumptions on the $L^2$ loss. We present error bounds for the flow matching procedure using fully deterministic sampling, assuming an $L^2$ bound on the approximation error and a certain regularity condition on the data distributions.
We study the online learnability of hypothesis classes with respect to arbitrary, but bounded loss functions. No characterization of online learnability is known at this level of generality. We give a new scale-sensitive combinatorial dimension, named the sequential minimax dimension, and show that it gives a tight quantitative characterization of online learnability. In addition, we show that the sequential minimax dimension subsumes most existing combinatorial dimensions in online learning theory.
We propose to estimate the weight matrix used for forecast reconciliation as parameters in a general linear model in order to quantify its uncertainty. This implies that forecast reconciliation can be formulated as an orthogonal projection from the space of base-forecast errors into a coherent linear subspace. We use variance decomposition together with the Wishart distribution to derive the central estimator for the forecast-error covariance matrix. In addition, we prove that distance-reducing properties apply to the reconciled forecasts at all levels of the hierarchy as well as to the forecast-error covariance. A covariance matrix for the reconciliation weight matrix is derived, which leads to improved estimates of the forecast-error covariance matrix. We show how shrinkage can be introduced in the formulated model by imposing specific priors on the weight matrix and the forecast-error covariance matrix. The method is illustrated in a simulation study that shows consistent improvements in the log-score. Finally, standard errors for the weight matrix and the variance-separation formula are illustrated using a case study of forecasting electricity load in Sweden.
We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.
We propose a functional accelerated failure time model to characterize effects of both functional and scalar covariates on the time to event of interest, and provide regularity conditions to guarantee model identifiability. For efficient estimation of model parameters, we develop a sieve maximum likelihood approach where parametric and nonparametric coefficients are bundled with an unknown baseline hazard function in the likelihood function. Not only do the bundled parameters cause immense numerical difficulties, but they also result in new challenges in theoretical development. By developing a general theoretical framework, we overcome the challenges arising from the bundled parameters and derive the convergence rate of the proposed estimator. Furthermore, we prove that the finite-dimensional estimator is $\sqrt{n}$-consistent, asymptotically normal and achieves the semiparametric information bound. The proposed inference procedures are evaluated by extensive simulation studies and illustrated with an application to the sequential organ failure assessment data from the Improving Care of Acute Lung Injury Patients study.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.