This paper studies the third-order characteristic of nonsingular discrete memoryless channels and the Gaussian channel with a maximal power constraint. The third-order term in our expansions employs a new quantity here called the \emph{channel skewness}, which affects the approximation accuracy more significantly as the error probability decreases. For the Gaussian channel, evaluating Shannon's (1959) random coding and sphere-packing bounds in the central limit theorem (CLT) regime enables exact computation of the channel skewness. For discrete memoryless channels, this work generalizes Moulin's (2017) bounds on the asymptotic expansion of the maximum achievable message set size for nonsingular channels from the CLT regime to include the moderate deviations (MD) regime, thereby refining Altu\u{g} and Wagner's (2014) MD result. For an example binary symmetric channel and most practically important $(n, \epsilon)$ pairs, including $n \in [100, 500]$ and $\epsilon \in [10^{-10}, 10^{-1}]$, an approximation up to the channel skewness is the most accurate among several expansions in the literature. A derivation of the third-order term in the type-II error exponent of binary hypothesis testing in the MD regime is also included; the resulting third-order term is similar to the channel skewness.
In this work we demonstrate how a lack of synchronization can in fact be advantageous in the problem of random access. Specifically, we consider a multiple-access problem over a frame-asynchronous 2-user binary-input adder channel in the unsourced setup (2-UBAC). Previous work has shown that under perfect synchronization the per-user rates achievable with linear codes over the 2-UBAC are limited by 0.5 bit per channel use (compared to the capacity of 0.75). In this paper, we first demonstrate that arbitrary small (even single-bit) shift between the user's frames enables (random) linear codes to attain full capacity of 0.75 bit/user. Furthermore, we derive density evolution equations for irregular LDPC codes, and prove (via concentration arguments) that they correctly track the asymptotic bit-error rate of a BP decoder. Optimizing the degree distributions we construct LDPC codes achieving per-user rates of 0.73 bit per channel use.
In this paper, the problem of correction of a single error in $q$-ary symmetric channel with noiseless feedback is considered. We propose an algorithm to construct codes with feedback inductively. For all prime power $q$ we prove that two instances of feedback are sufficient to transmit over the $q$-ary symmetric channel the same number of messages as in the case of complete feedback. Our other contribution is the construction of codes with one-time feedback with the same parameters as Hamming codes for $q$ that is not a prime power. We also construct single-error-correcting codes with one-time feedback of size $q^{n-2}$ for arbitrary $q$ and $n\leq q+1$, which can be seen as an analog for Reed-Solomon codes.
We consider the upper confidence bound strategy for Gaussian multi-armed bandits with known control horizon sizes $N$ and build its limiting description with a system of stochastic differential equations and ordinary differential equations. Rewards for the arms are assumed to have unknown expected values and known variances. A set of Monte-Carlo simulations was performed for the case of close distributions of rewards, when mean rewards differ by the magnitude of order $N^{-1/2}$, as it yields the highest normalized regret, to verify the validity of the obtained description. The minimal size of the control horizon when the normalized regret is not noticeably larger than maximum possible was estimated.
Various methods have been proposed to approximate a solution to the truncated Hausdorff moment problem. In this paper, we establish a method of comparison for the performance of the approximations. Three ways of producing random moment sequences are discussed and applied. Also, some of the approximations have been rewritten as linear transforms, and detailed accuracy requirements are analyzed. Our finding shows that the performance of the approximations differs significantly in their convergence properties, accuracy, and numerical complexity and that the decay type of the moment sequence strongly affects the accuracy requirement.
LT (Luby transform) codes are a celebrated family of rateless erasure codes (RECs). Most of existing LT codes were designed for applications in which a centralized encoder possesses all message blocks and is solely responsible for encoding them into codewords. Distributed LT codes, in which message blocks are physically scattered across multiple different locations (encoders) that need to collaboratively perform the encoding, has never been systemically studied before despite its growing importance in applications. In this work, we present the first systemic study of LT codes in the distributed setting, and make the following three major contributions. First, we show that only a proper subset of LT codes are feasible in the distributed setting, and give the sufficient and necessary condition for such feasibility. Second, we propose a distributed encoding protocol that can efficiently implement any feasible code. The protocol is parameterized by a so-called action probability array (APA) that is only a few KBs in size, and any feasible code corresponds to a valid APA setting and vice versa. Third, we propose two heuristic search algorithms that have led to the discovery of feasible codes that are much more efficient than the state of the art.
A large variety of real-world Reinforcement Learning (RL) tasks is characterized by a complex and heterogeneous structure that makes end-to-end (or flat) approaches hardly applicable or even infeasible. Hierarchical Reinforcement Learning (HRL) provides general solutions to address these problems thanks to a convenient multi-level decomposition of the tasks, making their solution accessible. Although often used in practice, few works provide theoretical guarantees to justify this outcome effectively. Thus, it is not yet clear when to prefer such approaches compared to standard flat ones. In this work, we provide an option-dependent upper bound to the regret suffered by regret minimization algorithms in finite-horizon problems. We illustrate that the performance improvement derives from the planning horizon reduction induced by the temporal abstraction enforced by the hierarchical structure. Then, focusing on a sub-setting of HRL approaches, the options framework, we highlight how the average duration of the available options affects the planning horizon and, consequently, the regret itself. Finally, we relax the assumption of having pre-trained options to show how in particular situations, learning hierarchically from scratch could be preferable to using a standard approach.
Prediction-based decision-making systems are becoming increasingly prevalent in various domains. Previous studies have demonstrated that such systems are vulnerable to runaway feedback loops, e.g., when police are repeatedly sent back to the same neighborhoods regardless of the actual rate of criminal activity, which exacerbate existing biases. In practice, the automated decisions have dynamic feedback effects on the system itself that can perpetuate over time, making it difficult for short-sighted design choices to control the system's evolution. While researchers started proposing longer-term solutions to prevent adverse outcomes (such as bias towards certain groups), these interventions largely depend on ad hoc modeling assumptions and a rigorous theoretical understanding of the feedback dynamics in ML-based decision-making systems is currently missing. In this paper, we use the language of dynamical systems theory, a branch of applied mathematics that deals with the analysis of the interconnection of systems with dynamic behaviors, to rigorously classify the different types of feedback loops in the ML-based decision-making pipeline. By reviewing existing scholarly work, we show that this classification covers many examples discussed in the algorithmic fairness community, thereby providing a unifying and principled framework to study feedback loops. By qualitative analysis, and through a simulation example of recommender systems, we show which specific types of ML biases are affected by each type of feedback loop. We find that the existence of feedback loops in the ML-based decision-making pipeline can perpetuate, reinforce, or even reduce ML biases.
A code of length $n$ is said to be (combinatorially) $(\rho,L)$-list decodable if the Hamming ball of radius $\rho n$ around any vector in the ambient space does not contain more than $L$ codewords. We study a recently introduced class of higher order MDS codes, which are closely related (via duality) to codes that achieve a generalized Singleton bound for list decodability. For some $\ell\geq 1$, higher order MDS codes of length $n$, dimension $k$, and order $\ell$ are denoted as $(n,k)$-MDS($\ell$) codes. We present a number of results on the structure of these codes, identifying the `extend-ability' of their parameters in various scenarios. Specifically, for some parameter regimes, we identify conditions under which $(n_1,k_1)$-MDS($\ell_1$) codes can be obtained from $(n_2,k_2)$-MDS($\ell_2$) codes, via various techniques. We believe that these results will aid in efficient constructions of higher order MDS codes. We also obtain a new field size upper bound for the existence of such codes, which arguably improves over the best known existing bound, in some parameter regimes.
Stochastic dual dynamic programming is a cutting plane type algorithm for multi-stage stochastic optimization originated about 30 years ago. In spite of its popularity in practice, there does not exist any analysis on the convergence rates of this method. In this paper, we first establish the number of iterations, i.e., iteration complexity, required by a basic dynamic cutting plane method for solving relatively simple multi-stage optimization problems, by introducing novel mathematical tools including the saturation of search points. We then refine these basic tools and establish the iteration complexity for both deterministic and stochastic dual dynamic programming methods for solving more general multi-stage stochastic optimization problems under the standard stage-wise independence assumption. Our results indicate that the complexity of some deterministic variants of these methods mildly increases with the number of stages $T$, in fact linearly dependent on $T$ for discounted problems. Therefore, they are efficient for strategic decision making which involves a large number of stages, but with a relatively small number of decision variables in each stage. Without explicitly discretizing the state and action spaces, these methods might also be pertinent to the related reinforcement learning and stochastic control areas.
Federated learning (FL) is a new distributed machine learning framework known for its benefits on data privacy and communication efficiency. Since full client participation in many cases is infeasible due to constrained resources, partial participation FL algorithms have been investigated that proactively select/sample a subset of clients, aiming to achieve learning performance close to the full participation case. This paper studies a passive partial client participation scenario that is much less well understood, where partial participation is a result of external events, namely client dropout, rather than a decision of the FL algorithm. We cast FL with client dropout as a special case of a larger class of FL problems where clients can submit substitute (possibly inaccurate) local model updates. Based on our convergence analysis, we develop a new algorithm FL-FDMS that discovers friends of clients (i.e., clients whose data distributions are similar) on-the-fly and uses friends' local updates as substitutes for the dropout clients, thereby reducing the substitution error and improving the convergence performance. A complexity reduction mechanism is also incorporated into FL-FDMS, making it both theoretically sound and practically useful. Experiments on MNIST and CIFAR-10 confirmed the superior performance of FL-FDMS in handling client dropout in FL.