Motivated by unconsolidated data situation and the lack of a standard benchmark in the field, we complement our previous efforts and present a comprehensive corpus designed for training and evaluating text-independent multi-channel speaker verification systems. It can be readily used also for experiments with dereverberation, denoising, and speech enhancement. We tackled the ever-present problem of the lack of multi-channel training data by utilizing data simulation on top of clean parts of the Voxceleb dataset. The development and evaluation trials are based on a retransmitted Voices Obscured in Complex Environmental Settings (VOiCES) corpus, which we modified to provide multi-channel trials. We publish full recipes that create the dataset from public sources as the MultiSV corpus, and we provide results with two of our multi-channel speaker verification systems with neural network-based beamforming based either on predicting ideal binary masks or the more recent Conv-TasNet.
Automatic recognition of disordered speech remains a highly challenging task to date. Sources of variability commonly found in normal speech including accent, age or gender, when further compounded with the underlying causes of speech impairment and varying severity levels, create large diversity among speakers. To this end, speaker adaptation techniques play a vital role in current speech recognition systems. Motivated by the spectro-temporal level differences between disordered and normal speech that systematically manifest in articulatory imprecision, decreased volume and clarity, slower speaking rates and increased dysfluencies, novel spectro-temporal subspace basis embedding deep features derived by SVD decomposition of speech spectrum are proposed to facilitate both accurate speech intelligibility assessment and auxiliary feature based speaker adaptation of state-of-the-art hybrid DNN and end-to-end disordered speech recognition systems. Experiments conducted on the UASpeech corpus suggest the proposed spectro-temporal deep feature adapted systems consistently outperformed baseline i-Vector adaptation by up to 2.63% absolute (8.6% relative) reduction in word error rate (WER) with or without data augmentation. Learning hidden unit contribution (LHUC) based speaker adaptation was further applied. The final speaker adapted system using the proposed spectral basis embedding features gave an overall WER of 25.6% on the UASpeech test set of 16 dysarthric speakers
This paper investigates methods to effectively retrieve speaker information from the personalized speaker adapted neural network acoustic models (AMs) in automatic speech recognition (ASR). This problem is especially important in the context of federated learning of ASR acoustic models where a global model is learnt on the server based on the updates received from multiple clients. We propose an approach to analyze information in neural network AMs based on a neural network footprint on the so-called Indicator dataset. Using this method, we develop two attack models that aim to infer speaker identity from the updated personalized models without access to the actual users' speech data. Experiments on the TED-LIUM 3 corpus demonstrate that the proposed approaches are very effective and can provide equal error rate (EER) of 1-2%.
Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.
Advanced text to speech (TTS) models such as FastSpeech can synthesize speech significantly faster than previous autoregressive models with comparable quality. The training of FastSpeech model relies on an autoregressive teacher model for duration prediction (to provide more information as input) and knowledge distillation (to simplify the data distribution in output), which can ease the one-to-many mapping problem (i.e., multiple speech variations correspond to the same text) in TTS. However, FastSpeech has several disadvantages: 1) the teacher-student distillation pipeline is complicated, 2) the duration extracted from the teacher model is not accurate enough, and the target mel-spectrograms distilled from teacher model suffer from information loss due to data simplification, both of which limit the voice quality. In this paper, we propose FastSpeech 2, which addresses the issues in FastSpeech and better solves the one-to-many mapping problem in TTS by 1) directly training the model with ground-truth target instead of the simplified output from teacher, and 2) introducing more variation information of speech (e.g., pitch, energy and more accurate duration) as conditional inputs. Specifically, we extract duration, pitch and energy from speech waveform and directly take them as conditional inputs during training and use predicted values during inference. We further design FastSpeech 2s, which is the first attempt to directly generate speech waveform from text in parallel, enjoying the benefit of full end-to-end training and even faster inference than FastSpeech. Experimental results show that 1) FastSpeech 2 and 2s outperform FastSpeech in voice quality with much simplified training pipeline and reduced training time; 2) FastSpeech 2 and 2s can match the voice quality of autoregressive models while enjoying much faster inference speed.
This paper introduces a semi-supervised contrastive learning framework and its application to text-independent speaker verification. The proposed framework employs generalized contrastive loss (GCL). GCL unifies losses from two different learning frameworks, supervised metric learning and unsupervised contrastive learning, and thus it naturally determines the loss for semi-supervised learning. In experiments, we applied the proposed framework to text-independent speaker verification on the VoxCeleb dataset. We demonstrate that GCL enables the learning of speaker embeddings in three manners, supervised learning, semi-supervised learning, and unsupervised learning, without any changes in the definition of the loss function.
Recently, fully recurrent neural network (RNN) based end-to-end models have been proven to be effective for multi-speaker speech recognition in both the single-channel and multi-channel scenarios. In this work, we explore the use of Transformer models for these tasks by focusing on two aspects. First, we replace the RNN-based encoder-decoder in the speech recognition model with a Transformer architecture. Second, in order to use the Transformer in the masking network of the neural beamformer in the multi-channel case, we modify the self-attention component to be restricted to a segment rather than the whole sequence in order to reduce computation. Besides the model architecture improvements, we also incorporate an external dereverberation preprocessing, the weighted prediction error (WPE), enabling our model to handle reverberated signals. Experiments on the spatialized wsj1-2mix corpus show that the Transformer-based models achieve 40.9% and 25.6% relative WER reduction, down to 12.1% and 6.4% WER, under the anechoic condition in single-channel and multi-channel tasks, respectively, while in the reverberant case, our methods achieve 41.5% and 13.8% relative WER reduction, down to 16.5% and 15.2% WER.
Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of target mel-sprectrogram sequence for parallel mel-sprectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the skipped words and repeated words, and can adjust voice speed smoothly. Most importantly, compared with autoregressive models, our model speeds up the mel-sprectrogram generation by 270x. Therefore, we call our model FastSpeech. We will release the code on Github.
Automated recognition of texts in scenes has been a research challenge for years, largely due to the arbitrary variation of text appearances in perspective distortion, text line curvature, text styles and different types of imaging artifacts. The recent deep networks are capable of learning robust representations with respect to imaging artifacts and text style changes, but still face various problems while dealing with scene texts with perspective and curvature distortions. This paper presents an end-to-end trainable scene text recognition system (ESIR) that iteratively removes perspective distortion and text line curvature as driven by better scene text recognition performance. An innovative rectification network is developed which employs a novel line-fitting transformation to estimate the pose of text lines in scenes. In addition, an iterative rectification pipeline is developed where scene text distortions are corrected iteratively towards a fronto-parallel view. The ESIR is also robust to parameter initialization and the training needs only scene text images and word-level annotations as required by most scene text recognition systems. Extensive experiments over a number of public datasets show that the proposed ESIR is capable of rectifying scene text distortions accurately, achieving superior recognition performance for both normal scene text images and those suffering from perspective and curvature distortions.
Incremental improvements in accuracy of Convolutional Neural Networks are usually achieved through use of deeper and more complex models trained on larger datasets. However, enlarging dataset and models increases the computation and storage costs and cannot be done indefinitely. In this work, we seek to improve the identification and verification accuracy of a text-independent speaker recognition system without use of extra data or deeper and more complex models by augmenting the training and testing data, finding the optimal dimensionality of embedding space and use of more discriminative loss functions. Results of experiments on VoxCeleb dataset suggest that: (i) Simple repetition and random time-reversion of utterances can reduce prediction errors by up to 18%. (ii) Lower dimensional embeddings are more suitable for verification. (iii) Use of proposed logistic margin loss function leads to unified embeddings with state-of-the-art identification and competitive verification accuracies.
In recent years, a growing body of research has focused on the problem of person re-identification (re-id). The re-id techniques attempt to match the images of pedestrians from disjoint non-overlapping camera views. A major challenge of re-id is the serious intra-class variations caused by changing viewpoints. To overcome this challenge, we propose a deep neural network-based framework which utilizes the view information in the feature extraction stage. The proposed framework learns a view-specific network for each camera view with a cross-view Euclidean constraint (CV-EC) and a cross-view center loss (CV-CL). We utilize CV-EC to decrease the margin of the features between diverse views and extend the center loss metric to a view-specific version to better adapt the re-id problem. Moreover, we propose an iterative algorithm to optimize the parameters of the view-specific networks from coarse to fine. The experiments demonstrate that our approach significantly improves the performance of the existing deep networks and outperforms the state-of-the-art methods on the VIPeR, CUHK01, CUHK03, SYSU-mReId, and Market-1501 benchmarks.