In this paper, we formulate a novel task to synthesize speech in sync with a silent pre-recorded video, denoted as automatic voice over (AVO). Unlike traditional speech synthesis, AVO seeks to generate not only human-sounding speech, but also perfect lip-speech synchronization. A natural solution to AVO is to condition the speech rendering on the temporal progression of lip sequence in the video. We propose a novel text-to-speech model that is conditioned on visual input, named VisualTTS, for accurate lip-speech synchronization. The proposed VisualTTS adopts two novel mechanisms that are 1) textual-visual attention, and 2) visual fusion strategy during acoustic decoding, which both contribute to forming accurate alignment between the input text content and lip motion in input lip sequence. Experimental results show that VisualTTS achieves accurate lip-speech synchronization and outperforms all baseline systems.
Audio-visual speaker diarization aims at detecting ``who spoken when`` using both auditory and visual signals. Existing audio-visual diarization datasets are mainly focused on indoor environments like meeting rooms or news studios, which are quite different from in-the-wild videos in many scenarios such as movies, documentaries, and audience sitcoms. To create a testbed that can effectively compare diarization methods on videos in the wild, we annotate the speaker diarization labels on the AVA movie dataset and create a new benchmark called AVA-AVD. This benchmark is challenging due to the diverse scenes, complicated acoustic conditions, and completely off-screen speakers. Yet, how to deal with off-screen and on-screen speakers together still remains a critical challenge. To overcome it, we propose a novel Audio-Visual Relation Network (AVR-Net) which introduces an effective modality mask to capture discriminative information based on visibility. Experiments have shown that our method not only can outperform state-of-the-art methods but also is more robust as varying the ratio of off-screen speakers. Ablation studies demonstrate the advantages of the proposed AVR-Net and especially the modality mask on diarization. Our data and code will be made publicly available at //github.com/zcxu-eric/AVA-AVD.
This paper introduces an online speaker diarization system that can handle long-time audio with low latency. First, a new variant of agglomerative hierarchy clustering is built to cluster the speakers in an online fashion. Then, a speaker embedding graph is proposed. We use this graph to exploit a graph-based reclustering method to further improve the performance. Finally, a label matching algorithm is introduced to generate consistent speaker labels, and we evaluate our system on both DIHARD3 and VoxConverse datasets, which contain long audios with various kinds of scenarios. The experimental results show that our online diarization system outperforms the baseline offline system and has comparable performance to our offline system.
Advanced text to speech (TTS) models such as FastSpeech can synthesize speech significantly faster than previous autoregressive models with comparable quality. The training of FastSpeech model relies on an autoregressive teacher model for duration prediction (to provide more information as input) and knowledge distillation (to simplify the data distribution in output), which can ease the one-to-many mapping problem (i.e., multiple speech variations correspond to the same text) in TTS. However, FastSpeech has several disadvantages: 1) the teacher-student distillation pipeline is complicated, 2) the duration extracted from the teacher model is not accurate enough, and the target mel-spectrograms distilled from teacher model suffer from information loss due to data simplification, both of which limit the voice quality. In this paper, we propose FastSpeech 2, which addresses the issues in FastSpeech and better solves the one-to-many mapping problem in TTS by 1) directly training the model with ground-truth target instead of the simplified output from teacher, and 2) introducing more variation information of speech (e.g., pitch, energy and more accurate duration) as conditional inputs. Specifically, we extract duration, pitch and energy from speech waveform and directly take them as conditional inputs during training and use predicted values during inference. We further design FastSpeech 2s, which is the first attempt to directly generate speech waveform from text in parallel, enjoying the benefit of full end-to-end training and even faster inference than FastSpeech. Experimental results show that 1) FastSpeech 2 and 2s outperform FastSpeech in voice quality with much simplified training pipeline and reduced training time; 2) FastSpeech 2 and 2s can match the voice quality of autoregressive models while enjoying much faster inference speed.
Recently, fully recurrent neural network (RNN) based end-to-end models have been proven to be effective for multi-speaker speech recognition in both the single-channel and multi-channel scenarios. In this work, we explore the use of Transformer models for these tasks by focusing on two aspects. First, we replace the RNN-based encoder-decoder in the speech recognition model with a Transformer architecture. Second, in order to use the Transformer in the masking network of the neural beamformer in the multi-channel case, we modify the self-attention component to be restricted to a segment rather than the whole sequence in order to reduce computation. Besides the model architecture improvements, we also incorporate an external dereverberation preprocessing, the weighted prediction error (WPE), enabling our model to handle reverberated signals. Experiments on the spatialized wsj1-2mix corpus show that the Transformer-based models achieve 40.9% and 25.6% relative WER reduction, down to 12.1% and 6.4% WER, under the anechoic condition in single-channel and multi-channel tasks, respectively, while in the reverberant case, our methods achieve 41.5% and 13.8% relative WER reduction, down to 16.5% and 15.2% WER.
Tacotron-based text-to-speech (TTS) systems directly synthesize speech from text input. Such frameworks typically consist of a feature prediction network that maps character sequences to frequency-domain acoustic features, followed by a waveform reconstruction algorithm or a neural vocoder that generates the time-domain waveform from acoustic features. As the loss function is usually calculated only for frequency-domain acoustic features, that doesn't directly control the quality of the generated time-domain waveform. To address this problem, we propose a new training scheme for Tacotron-based TTS, referred to as WaveTTS, that has 2 loss functions: 1) time-domain loss, denoted as the waveform loss, that measures the distortion between the natural and generated waveform; and 2) frequency-domain loss, that measures the Mel-scale acoustic feature loss between the natural and generated acoustic features. WaveTTS ensures both the quality of the acoustic features and the resulting speech waveform. To our best knowledge, this is the first implementation of Tacotron with joint time-frequency domain loss. Experimental results show that the proposed framework outperforms the baselines and achieves high-quality synthesized speech.
Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of target mel-sprectrogram sequence for parallel mel-sprectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the skipped words and repeated words, and can adjust voice speed smoothly. Most importantly, compared with autoregressive models, our model speeds up the mel-sprectrogram generation by 270x. Therefore, we call our model FastSpeech. We will release the code on Github.
We present SpecAugment, a simple data augmentation method for speech recognition. SpecAugment is applied directly to the feature inputs of a neural network (i.e., filter bank coefficients). The augmentation policy consists of warping the features, masking blocks of frequency channels, and masking blocks of time steps. We apply SpecAugment on Listen, Attend and Spell networks for end-to-end speech recognition tasks. We achieve state-of-the-art performance on the LibriSpeech 960h and Swichboard 300h tasks, outperforming all prior work. On LibriSpeech, we achieve 6.8% WER on test-other without the use of a language model, and 5.8% WER with shallow fusion with a language model. This compares to the previous state-of-the-art hybrid system of 7.5% WER. For Switchboard, we achieve 7.2%/14.6% on the Switchboard/CallHome portion of the Hub5'00 test set without the use of a language model, and 6.8%/14.1% with shallow fusion, which compares to the previous state-of-the-art hybrid system at 8.3%/17.3% WER.
Although end-to-end neural text-to-speech (TTS) methods (such as Tacotron2) are proposed and achieve state-of-the-art performance, they still suffer from two problems: 1) low efficiency during training and inference; 2) hard to model long dependency using current recurrent neural networks (RNNs). Inspired by the success of Transformer network in neural machine translation (NMT), in this paper, we introduce and adapt the multi-head attention mechanism to replace the RNN structures and also the original attention mechanism in Tacotron2. With the help of multi-head self-attention, the hidden states in the encoder and decoder are constructed in parallel, which improves the training efficiency. Meanwhile, any two inputs at different times are connected directly by self-attention mechanism, which solves the long range dependency problem effectively. Using phoneme sequences as input, our Transformer TTS network generates mel spectrograms, followed by a WaveNet vocoder to output the final audio results. Experiments are conducted to test the efficiency and performance of our new network. For the efficiency, our Transformer TTS network can speed up the training about 4.25 times faster compared with Tacotron2. For the performance, rigorous human tests show that our proposed model achieves state-of-the-art performance (outperforms Tacotron2 with a gap of 0.048) and is very close to human quality (4.39 vs 4.44 in MOS).
Although end-to-end neural text-to-speech (TTS) methods (such as Tacotron2) are proposed and achieve state-of-the-art performance, they still suffer from two problems: 1) low efficiency during training and inference; 2) hard to model long dependency using current recurrent neural networks (RNNs). Inspired by the success of Transformer network in neural machine translation (NMT), in this paper, we introduce and adapt the multi-head attention mechanism to replace the RNN structures and also the original attention mechanism in Tacotron2. With the help of multi-head self-attention, the hidden states in the encoder and decoder are constructed in parallel, which improves the training efficiency. Meanwhile, any two inputs at different times are connected directly by self-attention mechanism, which solves the long range dependency problem effectively. Using phoneme sequences as input, our Transformer TTS network generates mel spectrograms, followed by a WaveNet vocoder to output the final audio results. Experiments are conducted to test the efficiency and performance of our new network. For the efficiency, our Transformer TTS network can speed up the training about 4.25 times faster compared with Tacotron2. For the performance, rigorous human tests show that our proposed model achieves state-of-the-art performance (outperforms Tacotron2 with a gap of 0.048) and is very close to human quality (4.39 vs 4.44 in MOS).
Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In our previous work, we have shown that such architectures are comparable to state-of-the-art ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore techniques such as synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12,500 hour voice search task, we find that the proposed changes improve the WER of the LAS system from 9.2% to 5.6%, while the best conventional system achieve 6.7% WER. We also test both models on a dictation dataset, and our model provide 4.1% WER while the conventional system provides 5% WER.