亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces Borinot, an open-source flying robotic platform designed to perform hybrid agile locomotion and manipulation. This platform features a compact and powerful hexarotor that can be outfitted with torque-actuated extremities of diverse architecture, allowing for whole-body dynamic control. As a result, Borinot can perform agile tasks such as aggressive or acrobatic maneuvers with the participation of the whole-body dynamics. The extremities attached to Borinot can be utilized in various ways; during contact, they can be used as legs to create contact-based locomotion, or as arms to manipulate objects. In free flight, they can be used as tails to contribute to dynamics, mimicking the movements of many animals. This allows for any hybridization of these dynamic modes, like the jump-flight of chicken and locusts, making Borinot an ideal open-source platform for research on hybrid aerial-contact agile motion. To demonstrate the key capabilities of Borinot, we have fitted a planar 2DoF arm and implemented whole-body torque-level model-predictive-control. The result is a capable and adaptable platform that, we believe, opens up new avenues of research in the field of agile robotics.

相關內容

This work investigates how a predator-prey scenario can induce the emergence of Open-Ended Evolution (OEE). We utilize modular robots of fixed morphologies whose controllers are subject to evolution. In both species, robots can send and receive signals and perceive the relative positions of other robots in the environment. Specifically, we introduce a feature we call a tagging system: it modifies how individuals can perceive each other and is expected to increase behavioral complexity. Our results show the emergence of adaptive strategies, demonstrating the viability of inducing OEE through predator-prey dynamics using modular robots. Such emergence, nevertheless, seemed to depend on conditioning reproduction to an explicit behavioral criterion.

We study solute-laden flow through permeable geological formations with a focus on advection-dominated transport and volume reactions. As the fluid flows through the permeable medium, it reacts with the medium, thereby changing the morphology and properties of the medium; this in turn, affects the flow conditions and chemistry. These phenomena occur at various lengths and time scales, and makes the problem extremely complex. Multiscale modeling addresses this complexity by dividing the problem into those at individual scales, and systematically passing information from one scale to another. However, accurate implementation of these multiscale methods are still prohibitively expensive. We present a methodology to overcome this challenge that is computationally efficient and quantitatively accurate. We introduce a surrogate for the solution operator of the lower scale problem in the form of a recurrent neural operator, train it using one-time off-line data generated by repeated solutions of the lower scale problem, and then use this surrogate in application-scale calculations. The result is the accuracy of concurrent multiscale methods, at a cost comparable to those of classical models. We study various examples, and show the efficacy of this method in understanding the evolution of the morphology, properties and flow conditions over time in geological formations.

This study proposed a new methodological approach for the assessment of automated vehicle acceptance (AVA) from the perspective of road users inside and outside of AVs pre- and post- AV experience. Users can be drivers and passengers, but also external road users, such as pedestrians, (motor-)cyclists, and other car drivers, interacting with AVs. A pyramid was developed, which provides a hierarchical representation of user needs. Fundamental user needs are organized at the bottom of the pyramid, while higher-level user needs are at the top of the pyramid. The pyramid distinguishes between six levels of needs, which are safety trust, efficiency, comfort and pleasure, social influence, and well-being. Some user needs universally exist across users, while some are user-specific needs. These needs are translated into operationalizable indicators representing items of a questionnaire for the assessment of AVA of users inside and outside AVs. The formulation of the questionnaire items was derived from established technology acceptance models. As the instrument was based on the same model for all road users, the comparison of AVA between different road users is now possible. We recommend future research to validate this questionnaire, administering it in studies to contribute to the development of a short, efficient, and standardized metric for the assessment of AVA.

Recently, conditional score-based diffusion models have gained significant attention in the field of supervised speech enhancement, yielding state-of-the-art performance. However, these methods may face challenges when generalising to unseen conditions. To address this issue, we introduce an alternative approach that operates in an unsupervised manner, leveraging the generative power of diffusion models. Specifically, in a training phase, a clean speech prior distribution is learnt in the short-time Fourier transform (STFT) domain using score-based diffusion models, allowing it to unconditionally generate clean speech from Gaussian noise. Then, we develop a posterior sampling methodology for speech enhancement by combining the learnt clean speech prior with a noise model for speech signal inference. The noise parameters are simultaneously learnt along with clean speech estimation through an iterative expectationmaximisation (EM) approach. To the best of our knowledge, this is the first work exploring diffusion-based generative models for unsupervised speech enhancement, demonstrating promising results compared to a recent variational auto-encoder (VAE)-based unsupervised approach and a state-of-the-art diffusion-based supervised method. It thus opens a new direction for future research in unsupervised speech enhancement.

We evaluate using Julia as a single language and ecosystem paradigm powered by LLVM to develop workflow components for high-performance computing. We run a Gray-Scott, 2-variable diffusion-reaction application using a memory-bound, 7-point stencil kernel on Frontier, the US Department of Energy's first exascale supercomputer. We evaluate the feasibility, performance, scaling, and trade-offs of (i) the computational kernel on AMD's MI250x GPUs, (ii) weak scaling up to 4,096 MPI processes/GPUs or 512 nodes, (iii) parallel I/O writes using the ADIOS2 library bindings, and (iv) Jupyter Notebooks for interactive data analysis. Our results suggest that although Julia generates a reasonable LLVM-IR kernel, a nearly 50\% performance difference exists vs. native AMD HIP stencil codes when running on the GPUs. As expected, we observed near-zero overhead when using MPI and parallel I/O bindings for system-wide installed implementations. Consequently, Julia emerges as a compelling high-performance and high-productivity workflow composition strategy, as measured on the fastest supercomputer in the world.

Although industrial anomaly detection (AD) technology has made significant progress in recent years, generating realistic anomalies and learning priors of normal remain challenging tasks. In this study, we propose an end-to-end industrial anomaly detection method called FractalAD. Training samples are obtained by synthesizing fractal images and patches from normal samples. This fractal anomaly generation method is designed to sample the full morphology of anomalies. Moreover, we designed a backbone knowledge distillation structure to extract prior knowledge contained in normal samples. The differences between a teacher and a student model are converted into anomaly attention using a cosine similarity attention module. The proposed method enables an end-to-end semantic segmentation network to be used for anomaly detection without adding any trainable parameters to the backbone and segmentation head, and has obvious advantages over other methods in training and inference speed.. The results of ablation studies confirmed the effectiveness of fractal anomaly generation and backbone knowledge distillation. The results of performance experiments showed that FractalAD achieved competitive results on the MVTec AD dataset and MVTec 3D-AD dataset compared with other state-of-the-art anomaly detection methods.

This paper presents the design, modeling, and experimental validation of CapsuleBot, a compact hybrid aerial-ground vehicle designed for long-term covert reconnaissance. CapsuleBot combines the manoeuvrability of bicopter in the air with the energy efficiency and noise reduction of ground vehicles on the ground. To accomplish this, a structure named actuated-wheel-rotor has been designed, utilizing a sole motor for both the unilateral rotor tilting in the bicopter configuration and the wheel movement in ground mode. CapsuleBot comes equipped with two of these structures, enabling it to attain hybrid aerial-ground propulsion with just four motors. Importantly, the decoupling of motion modes is achieved without the need for additional drivers, enhancing the versatility and robustness of the system. Furthermore, we have designed the full dynamics and control for aerial and ground locomotion based on the bicopter model and the two-wheeled self-balancing vehicle model. The performance of CapsuleBot has been validated through experiments. The results demonstrate that CapsuleBot produces 40.53% less noise in ground mode and consumes 99.35% less energy, highlighting its potential for long-term covert reconnaissance applications.

This paper focuses on coordinating a robot swarm orbiting a convex path without collisions among the individuals. The individual robots lack braking capabilities and can only adjust their courses while maintaining their constant but different speeds. Instead of controlling the spatial relations between the robots, our formation control algorithm aims to deploy a dense robot swarm that mimics the behavior of tornado schooling fish. To achieve this objective safely, we employ a combination of a scalable overtaking rule, a guiding vector field, and a control barrier function with an adaptive radius to facilitate smooth overtakes. The decision-making process of the robots is distributed, relying only on local information. Practical applications include defensive structures or escorting missions with the added resiliency of a swarm without a centralized command. We provide a rigorous analysis of the proposed strategy and validate its effectiveness through numerical simulations involving a high density of unicycles.

This article proposes a novel high-performance computing approach for the prediction of the temperature field in powder bed fusion (PBF) additive manufacturing processes. In contrast to many existing approaches to part-scale simulations, the underlying computational model consistently resolves physical scan tracks without additional heat source scaling, agglomeration strategies or any other heuristic modeling assumptions. A growing, adaptively refined mesh accurately captures all details of the laser beam motion. Critically, the fine spatial resolution required for resolved scan tracks in combination with the high scan velocities underlying these processes mandates the use of comparatively small time steps to resolve the underlying physics. Explicit time integration schemes are well-suited for this setting, while unconditionally stable implicit time integration schemes are employed for the interlayer cool down phase governed by significantly larger time scales. These two schemes are combined and implemented in an efficient fast operator evaluation framework providing significant performance gains and optimization opportunities. The capabilities of the novel framework are demonstrated through realistic AM examples on the centimeter scale including the first scan-resolved simulation of the entire NIST AM Benchmark cantilever specimen, with a computation time of less than one day. Apart from physical insights gained through these simulation examples, also numerical aspects are thoroughly studied on basis of weak and strong parallel scaling tests. As potential applications, the proposed thermal PBF simulation framework can serve as a basis for microstructure and thermo-mechanical predictions on the part-scale, but also to assess the influence of scan pattern and part geometry on melt pool shape and temperature, which are important indicators for well-known process instabilities.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司