亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) such as GPT-3.5 and CodeLlama are powerful models for code generation and understanding. Fine-tuning these models comes with a high computational cost and requires a large labeled dataset. Alternatively, in-context learning techniques allow models to learn downstream tasks with only a few examples. Recently, researchers have shown how in-context learning performs well in bug detection and repair. In this paper, we propose code-pair classification task in which both the buggy and non-buggy versions are given to the model, and the model identifies the buggy ones. We evaluate our task in real-world dataset of bug detection and two most powerful LLMs. Our experiments indicate that an LLM can often pick the buggy from the non-buggy version of the code, and the code-pair classification task is much easier compared to be given a snippet and deciding if and where a bug exists.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · 情景 · Machine Learning · 訓練數據 ·
2024 年 1 月 5 日

Program synthesis is the task of automatically generating code based on a specification. In Syntax-Guided Synthesis (SyGuS) this specification is a combination of a syntactic template and a logical formula, and the result is guaranteed to satisfy both. We present a reinforcement-learning guided algorithm for SyGuS which uses Monte-Carlo Tree Search (MCTS) to search the space of candidate solutions. Our algorithm learns policy and value functions which, combined with the upper confidence bound for trees, allow it to balance exploration and exploitation. A common challenge in applying machine learning approaches to syntax-guided synthesis is the scarcity of training data. To address this, we present a method for automatically generating training data for SyGuS based on anti-unification of existing first-order satisfiability problems, which we use to train our MCTS policy. We implement and evaluate this setup and demonstrate that learned policy and value improve the synthesis performance over a baseline by over 26 percentage points in the training and testing sets. Our tool outperforms state-of-the-art tool cvc5 on the training set and performs comparably in terms of the total number of problems solved on the testing set (solving 23% of the benchmarks on which cvc5 fails). We make our data set publicly available, to enable further application of machine learning methods to the SyGuS problem.

Minimum Bayes-Risk (MBR) decoding is shown to be a powerful alternative to beam search decoding for a wide range of text generation tasks. However, MBR requires a huge amount of time for inference to compute the MBR objective, which makes the method infeasible in many situations where response time is critical. Confidence-based pruning (CBP) (Cheng and Vlachos, 2023) has recently been proposed to reduce the inference time in machine translation tasks. Although it is shown to significantly reduce the amount of computation, it requires hyperparameter tuning using a development set to be effective. To this end, we propose Approximate Minimum Bayes-Risk (AMBR) decoding, a hyperparameter-free method to run MBR decoding approximately. AMBR is derived from the observation that the problem of computing the sample-based MBR objective is the medoid identification problem. AMBR uses the Correlated Sequential Halving (CSH) algorithm (Baharav and Tse, 2019), the best approximation algorithm to date for the medoid identification problem, to compute the sample-based MBR objective. We evaluate AMBR on machine translation, text summarization, and image captioning tasks. The results show that AMBR achieves on par with CBP, with CBP selecting hyperparameters through an Oracle for each given computation budget.

Contrastive learning, as a self-supervised learning paradigm, becomes popular for Multivariate Time-Series (MTS) classification. It ensures the consistency across different views of unlabeled samples and then learns effective representations for these samples. Existing contrastive learning methods mainly focus on achieving temporal consistency with temporal augmentation and contrasting techniques, aiming to preserve temporal patterns against perturbations for MTS data. However, they overlook spatial consistency that requires the stability of individual sensors and their correlations. As MTS data typically originate from multiple sensors, ensuring spatial consistency becomes essential for the overall performance of contrastive learning on MTS data. Thus, we propose Graph-Aware Contrasting for spatial consistency across MTS data. Specifically, we propose graph augmentations including node and edge augmentations to preserve the stability of sensors and their correlations, followed by graph contrasting with both node- and graph-level contrasting to extract robust sensor- and global-level features. We further introduce multi-window temporal contrasting to ensure temporal consistency in the data for each sensor. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance on various MTS classification tasks.

A key benefit of deep vision-language models such as CLIP is that they enable zero-shot open vocabulary classification; the user has the ability to define novel class labels via natural language prompts at inference time. However, while CLIP-based zero-shot classifiers have demonstrated competitive performance across a range of domain shifts, they remain highly vulnerable to adversarial attacks. Therefore, ensuring the robustness of such models is crucial for their reliable deployment in the wild. In this work, we introduce Open Vocabulary Certification (OVC), a fast certification method designed for open-vocabulary models like CLIP via randomized smoothing techniques. Given a base "training" set of prompts and their corresponding certified CLIP classifiers, OVC relies on the observation that a classifier with a novel prompt can be viewed as a perturbed version of nearby classifiers in the base training set. Therefore, OVC can rapidly certify the novel classifier using a variation of incremental randomized smoothing. By using a caching trick, we achieve approximately two orders of magnitude acceleration in the certification process for novel prompts. To achieve further (heuristic) speedups, OVC approximates the embedding space at a given input using a multivariate normal distribution bypassing the need for sampling via forward passes through the vision backbone. We demonstrate the effectiveness of OVC on through experimental evaluation using multiple vision-language backbones on the CIFAR-10 and ImageNet test datasets.

RGB-T semantic segmentation is a key technique for autonomous driving scenes understanding. For the existing RGB-T semantic segmentation methods, however, the effective exploration of the complementary relationship between different modalities is not implemented in the information interaction between multiple levels. To address such an issue, the Context-Aware Interaction Network (CAINet) is proposed for RGB-T semantic segmentation, which constructs interaction space to exploit auxiliary tasks and global context for explicitly guided learning. Specifically, we propose a Context-Aware Complementary Reasoning (CACR) module aimed at establishing the complementary relationship between multimodal features with the long-term context in both spatial and channel dimensions. Further, considering the importance of global contextual and detailed information, we propose the Global Context Modeling (GCM) module and Detail Aggregation (DA) module, and we introduce specific auxiliary supervision to explicitly guide the context interaction and refine the segmentation map. Extensive experiments on two benchmark datasets of MFNet and PST900 demonstrate that the proposed CAINet achieves state-of-the-art performance. The code is available at //github.com/YingLv1106/CAINet.

We investigate whether general-domain large language models such as GPT-4 Turbo can perform risk stratification and predict post-operative outcome measures using a description of the procedure and a patient's clinical notes derived from the electronic health record. We examine predictive performance on 8 different tasks: prediction of ASA Physical Status Classification, hospital admission, ICU admission, unplanned admission, hospital mortality, PACU Phase 1 duration, hospital duration, and ICU duration. Few-shot and chain-of-thought prompting improves predictive performance for several of the tasks. We achieve F1 scores of 0.50 for ASA Physical Status Classification, 0.81 for ICU admission, and 0.86 for hospital mortality. Performance on duration prediction tasks were universally poor across all prompt strategies. Current generation large language models can assist clinicians in perioperative risk stratification on classification tasks and produce high-quality natural language summaries and explanations.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司