亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures, with their core computational framework primarily using the leaky integrate-and-fire (LIF) neuron model. However, the limited hidden state representation of LIF neurons, characterized by a scalar membrane potential, and sequential spike generation process, poses challenges for effectively developing scalable spiking models to address long-range dependencies in sequence learning tasks. In this study, we develop a scalable probabilistic spiking learning framework for long-range dependency tasks leveraging the fundamentals of state space models. Unlike LIF neurons that rely on the determinitic Heaviside function for a sequential process of spike generation, we introduce a SpikeSampler layer that samples spikes stochastically based on an SSM-based neuronal model while allowing parallel computations. To address non-differentiability of the spiking operation and enable effective training, we also propose a surrogate function tailored for the stochastic nature of the SpikeSampler layer. To enhance inter-neuron communication, we introduce the SpikeMixer block, which integrates spikes from neuron populations in each layer. This is followed by a ClampFuse layer, incorporating a residual connection to capture complex dependencies, enabling scalability of the model. Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks, encompassing the Long Range Arena benchmark, permuted sequential MNIST, and the Speech Command dataset and demonstrate sparse spiking pattern highlighting its computational efficiency.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 解碼 · FAST · 大語言模型 ·
2024 年 11 月 11 日

Large language models (LLMs) have revolutionized natural language processing and broadened their applicability across diverse commercial applications. However, the deployment of these models is constrained by high inference time in multilingual settings. To mitigate this challenge, this paper explores a training recipe of an assistant model in speculative decoding, which is leveraged to draft and-then its future tokens are verified by the target LLM. We show that language-specific draft models, optimized through a targeted pretrain-and-finetune strategy, substantially brings a speedup in inference time compared to the previous methods. We validate these models across various languages in inference time, out-of-domain speedup, and GPT-4o evaluation.

As large language models become increasingly prevalent in the financial sector, there is a pressing need for a standardized method to comprehensively assess their performance. However, existing finance benchmarks often suffer from limited language and task coverage, as well as challenges such as low-quality datasets and inadequate adaptability for LLM evaluation. To address these limitations, we propose "Golden Touchstone", the first comprehensive bilingual benchmark for financial LLMs, which incorporates representative datasets from both Chinese and English across eight core financial NLP tasks. Developed from extensive open source data collection and industry-specific demands, this benchmark includes a variety of financial tasks aimed at thoroughly assessing models' language understanding and generation capabilities. Through comparative analysis of major models on the benchmark, such as GPT-4o Llama3, FinGPT and FinMA, we reveal their strengths and limitations in processing complex financial information. Additionally, we open-sourced Touchstone-GPT, a financial LLM trained through continual pre-training and financial instruction tuning, which demonstrates strong performance on the bilingual benchmark but still has limitations in specific tasks.This research not only provides the financial large language models with a practical evaluation tool but also guides the development and optimization of future research. The source code for Golden Touchstone and model weight of Touchstone-GPT have been made publicly available at \url{//github.com/IDEA-FinAI/Golden-Touchstone}, contributing to the ongoing evolution of FinLLMs and fostering further research in this critical area.

Advances in artificial intelligence (AI) have great potential to help address societal challenges that are both collective in nature and present at national or trans-national scale. Pressing challenges in healthcare, finance, infrastructure and sustainability, for instance, might all be productively addressed by leveraging and amplifying AI for national-scale collective intelligence. The development and deployment of this kind of AI faces distinctive challenges, both technical and socio-technical. Here, a research strategy for mobilising inter-disciplinary research to address these challenges is detailed and some of the key issues that must be faced are outlined.

Nowadays, neural networks are commonly used to solve various problems. Unfortunately, despite their effectiveness, they are often perceived as black boxes capable of providing answers without explaining their decisions, which raises numerous ethical and legal concerns. Fortunately, the field of explainability helps users understand these results. This aspect of machine learning allows users to grasp the decision-making process of a model and verify the relevance of its outcomes. In this article, we focus on the learning process carried out by a ``time distributed`` convRNN, which performs anomaly detection from video data.

Large language models (LLMs) are increasingly being used in materials science. However, little attention has been given to benchmarking and standardized evaluation for LLM-based materials property prediction, which hinders progress. We present LLM4Mat-Bench, the largest benchmark to date for evaluating the performance of LLMs in predicting the properties of crystalline materials. LLM4Mat-Bench contains about 1.9M crystal structures in total, collected from 10 publicly available materials data sources, and 45 distinct properties. LLM4Mat-Bench features different input modalities: crystal composition, CIF, and crystal text description, with 4.7M, 615.5M, and 3.1B tokens in total for each modality, respectively. We use LLM4Mat-Bench to fine-tune models with different sizes, including LLM-Prop and MatBERT, and provide zero-shot and few-shot prompts to evaluate the property prediction capabilities of LLM-chat-like models, including Llama, Gemma, and Mistral. The results highlight the challenges of general-purpose LLMs in materials science and the need for task-specific predictive models and task-specific instruction-tuned LLMs in materials property prediction.

The topics of Artificial intelligence (AI) and especially Machine Learning (ML) are increasingly making their way into educational curricula. To facilitate the access for students, a variety of platforms, visual tools, and digital games are already being used to introduce ML concepts and strengthen the understanding of how AI works. We take a look at didactic principles that are employed for teaching computer science, define criteria, and, based on those, evaluate a selection of prominent existing platforms, tools, and games. Additionally, we criticize the approach of portraying ML mostly as a black-box and the resulting missing focus on creating an understanding of data, algorithms, and models that come with it. To tackle this issue, we present a concept that covers intermodal transfer, computational and explanatory thinking, ICE-T, as an extension of known didactic principles. With our multi-faceted concept, we believe that planners of learning units, creators of learning platforms and educators can improve on teaching ML.

The emergence of large language models (LLMs) relies heavily on distributed training strategies, among which pipeline parallelism plays a crucial role. As LLMs' training sequence length extends to 32k or even 128k, the current pipeline parallel methods face severe bottlenecks, including high memory footprints and substantial pipeline bubbles, greatly hindering model scalability and training throughput. To enhance memory efficiency and training throughput, in this work, we introduce an efficient sequence-level one-forward-one-backward (1F1B) pipeline scheduling method tailored for training LLMs on long sequences named Seq1F1B. Seq1F1B decomposes batch-level schedulable units into finer sequence-level units, reducing bubble size and memory footprint. Considering that Seq1F1B may produce slight extra bubbles if sequences are split evenly, we design a computation-wise strategy to partition input sequences and mitigate this side effect. Compared to competitive pipeline baseline methods such as Megatron 1F1B pipeline parallelism, our method achieves higher training throughput with less memory footprint. Notably, Seq1F1B efficiently trains a LLM with 30B parameters on sequences up to 64k using 64 NVIDIA A100 GPUs without recomputation strategies, a feat unachievable with existing methods. Our source code is based on Megatron-LM, and now is avaiable at: //github.com/MayDomine/Seq1F1B.git.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司