亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Streaming models are an essential component of real-time speech enhancement tools. The streaming regime constrains speech enhancement models to use only a tiny context of future information. As a result, the low-latency streaming setup is generally considered a challenging task and has a significant negative impact on the model's quality. However, the sequential nature of streaming generation offers a natural possibility for autoregression, that is, utilizing previous predictions while making current ones. The conventional method for training autoregressive models is teacher forcing, but its primary drawback lies in the training-inference mismatch that can lead to a substantial degradation in quality. In this study, we propose a straightforward yet effective alternative technique for training autoregressive low-latency speech enhancement models. We demonstrate that the proposed approach leads to stable improvement across diverse architectures and training scenarios.

相關內容

語(yu)(yu)音(yin)增強是指當語(yu)(yu)音(yin)信(xin)(xin)號被各種各樣的噪(zao)聲干擾(rao)(rao)、甚(shen)至(zhi)淹沒后(hou),從(cong)噪(zao)聲背景中提取有用(yong)的語(yu)(yu)音(yin)信(xin)(xin)號,抑制、降低噪(zao)聲干擾(rao)(rao)的技(ji)術(shu)。一(yi)句話(hua),從(cong)含噪(zao)語(yu)(yu)音(yin)中提取盡可能(neng)純凈的原始語(yu)(yu)音(yin)。

The stripe noise existing in remote sensing images badly degrades the visual quality and restricts the precision of data analysis. Therefore, many destriping models have been proposed in recent years. In contrast to these existing models, in this paper, we propose a nonconvex model with a DC function (i.e., the difference of convex functions) structure to remove the strip noise. To solve this model, we make use of the DC structure and apply an inexact proximal majorization-minimization algorithm with each inner subproblem solved by the alternating direction method of multipliers. It deserves mentioning that we design an implementable stopping criterion for the inner subproblem, while the convergence can still be guaranteed. Numerical experiments demonstrate the superiority of the proposed model and algorithm.

Large Language models (LLMs) can be induced to solve non-trivial problems with "few-shot" prompts including illustrative problem-solution examples. Now if the few-shots also include "chain of thought" (CoT) explanations, which are of the form problem-explanation-solution, LLMs will generate a "explained" solution, and perform even better. Recently an exciting, substantially better technique, self-consistency [1] (S-C) has emerged, based on the intuition that there are many plausible explanations for the right solution; when the LLM is sampled repeatedly to generate a pool of explanation-solution pairs, for a given problem, the most frequently occurring solutions in the pool (ignoring the explanations) tend to be even more likely to be correct! Unfortunately, the use of this highly-performant S-C (or even CoT) approach in software engineering settings is hampered by the lack of explanations; most software datasets lack explanations. In this paper, we describe an application of the S-C approach to program repair, using the commit log on the fix as the explanation, only in the illustrative few-shots. We achieve state-of-the art results, beating previous approaches to prompting-based program repair, on the MODIT dataset; we also find evidence suggesting that the correct commit messages are helping the LLM learn to produce better patches.

Deep generative models require large amounts of training data. This often poses a problem as the collection of datasets can be expensive and difficult, in particular datasets that are representative of the appropriate underlying distribution (e.g. demographic). This introduces biases in datasets which are further propagated in the models. We present an approach to mitigate biases in an existing generative adversarial network by rebalancing the model distribution. We do so by generating balanced data from an existing unbalanced deep generative model using latent space exploration and using this data to train a balanced generative model. Further, we propose a bias mitigation loss function that shows improvements in the fairness metric even when trained with unbalanced datasets. We show results for the Stylegan2 models while training on the FFHQ dataset for racial fairness and see that the proposed approach improves on the fairness metric by almost 5 times, whilst maintaining image quality. We further validate our approach by applying it to an imbalanced Cifar-10 dataset. Lastly, we argue that the traditionally used image quality metrics such as Frechet inception distance (FID) are unsuitable for bias mitigation problems.

Video-language pre-trained models have shown remarkable success in guiding video question-answering (VideoQA) tasks. However, due to the length of video sequences, training large-scale video-based models incurs considerably higher costs than training image-based ones. This motivates us to leverage the knowledge from image-based pretraining, despite the obvious gaps between image and video domains. To bridge these gaps, in this paper, we propose Tem-Adapter, which enables the learning of temporal dynamics and complex semantics by a visual Temporal Aligner and a textual Semantic Aligner. Unlike conventional pretrained knowledge adaptation methods that only concentrate on the downstream task objective, the Temporal Aligner introduces an extra language-guided autoregressive task aimed at facilitating the learning of temporal dependencies, with the objective of predicting future states based on historical clues and language guidance that describes event progression. Besides, to reduce the semantic gap and adapt the textual representation for better event description, we introduce a Semantic Aligner that first designs a template to fuse question and answer pairs as event descriptions and then learns a Transformer decoder with the whole video sequence as guidance for refinement. We evaluate Tem-Adapter and different pre-train transferring methods on two VideoQA benchmarks, and the significant performance improvement demonstrates the effectiveness of our method.

Image blending aims to combine multiple images seamlessly. It remains challenging for existing 2D-based methods, especially when input images are misaligned due to differences in 3D camera poses and object shapes. To tackle these issues, we propose a 3D-aware blending method using generative Neural Radiance Fields (NeRF), including two key components: 3D-aware alignment and 3D-aware blending. For 3D-aware alignment, we first estimate the camera pose of the reference image with respect to generative NeRFs and then perform 3D local alignment for each part. To further leverage 3D information of the generative NeRF, we propose 3D-aware blending that directly blends images on the NeRF's latent representation space, rather than raw pixel space. Collectively, our method outperforms existing 2D baselines, as validated by extensive quantitative and qualitative evaluations with FFHQ and AFHQ-Cat.

We present SCQPTH: a differentiable first-order splitting method for convex quadratic programs. The SCQPTH framework is based on the alternating direction method of multipliers (ADMM) and the software implementation is motivated by the state-of-the art solver OSQP: an operating splitting solver for convex quadratic programs (QPs). The SCQPTH software is made available as an open-source python package and contains many similar features including efficient reuse of matrix factorizations, infeasibility detection, automatic scaling and parameter selection. The forward pass algorithm performs operator splitting in the dimension of the original problem space and is therefore suitable for large scale QPs with $100-1000$ decision variables and thousands of constraints. Backpropagation is performed by implicit differentiation of the ADMM fixed-point mapping. Experiments demonstrate that for large scale QPs, SCQPTH can provide a $1\times - 10\times$ improvement in computational efficiency in comparison to existing differentiable QP solvers.

Text-guided image retrieval is to incorporate conditional text to better capture users' intent. Traditionally, the existing methods focus on minimizing the embedding distances between the source inputs and the targeted image, using the provided triplets $\langle$source image, source text, target image$\rangle$. However, such triplet optimization may limit the learned retrieval model to capture more detailed ranking information, e.g., the triplets are one-to-one correspondences and they fail to account for many-to-many correspondences arising from semantic diversity in feedback languages and images. To capture more ranking information, we propose a novel ranking-aware uncertainty approach to model many-to-many correspondences by only using the provided triplets. We introduce uncertainty learning to learn the stochastic ranking list of features. Specifically, our approach mainly comprises three components: (1) In-sample uncertainty, which aims to capture semantic diversity using a Gaussian distribution derived from both combined and target features; (2) Cross-sample uncertainty, which further mines the ranking information from other samples' distributions; and (3) Distribution regularization, which aligns the distributional representations of source inputs and targeted image. Compared to the existing state-of-the-art methods, our proposed method achieves significant results on two public datasets for composed image retrieval.

Artificial intelligence (AI) models are prevalent today and provide a valuable tool for artists. However, a lesser-known artifact that comes with AI models that is not always discussed is the glitch. Glitches occur for various reasons; sometimes, they are known, and sometimes they are a mystery. Artists who use AI models to generate art might not understand the reason for the glitch but often want to experiment and explore novel ways of augmenting the output of the glitch. This paper discusses some of the questions artists have when leveraging the glitch in AI art production. It explores the unexpected positive outcomes produced by glitches in the specific context of motion capture and performance art.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Degradation of image quality due to the presence of haze is a very common phenomenon. Existing DehazeNet [3], MSCNN [11] tackled the drawbacks of hand crafted haze relevant features. However, these methods have the problem of color distortion in gloomy (poor illumination) environment. In this paper, a cardinal (red, green and blue) color fusion network for single image haze removal is proposed. In first stage, network fusses color information present in hazy images and generates multi-channel depth maps. The second stage estimates the scene transmission map from generated dark channels using multi channel multi scale convolutional neural network (McMs-CNN) to recover the original scene. To train the proposed network, we have used two standard datasets namely: ImageNet [5] and D-HAZY [1]. Performance evaluation of the proposed approach has been carried out using structural similarity index (SSIM), mean square error (MSE) and peak signal to noise ratio (PSNR). Performance analysis shows that the proposed approach outperforms the existing state-of-the-art methods for single image dehazing.

北京阿比特科技有限公司