亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasing popularity of AI, particularly Large Language Models (LLMs), has significantly impacted various domains, including Software Engineering. This study explores the integration of AI tools in software engineering practices within a large organization. We focus on ANZ Bank, which employs over 5000 engineers covering all aspects of the software development life cycle. This paper details an experiment conducted using GitHub Copilot, a notable AI tool, within a controlled environment to evaluate its effectiveness in real-world engineering tasks. Additionally, this paper shares initial findings on the productivity improvements observed after GitHub Copilot was adopted on a large scale, with about 1000 engineers using it. ANZ Bank's six-week experiment with GitHub Copilot included two weeks of preparation and four weeks of active testing. The study evaluated participant sentiment and the tool's impact on productivity, code quality, and security. Initially, participants used GitHub Copilot for proposed use-cases, with their feedback gathered through regular surveys. In the second phase, they were divided into Control and Copilot groups, each tackling the same Python challenges, and their experiences were again surveyed. Results showed a notable boost in productivity and code quality with GitHub Copilot, though its impact on code security remained inconclusive. Participant responses were overall positive, confirming GitHub Copilot's effectiveness in large-scale software engineering environments. Early data from 1000 engineers also indicated a significant increase in productivity and job satisfaction.

相關內容

Extracting meaningful features from complex, high-dimensional datasets across scientific domains remains challenging. Current methods often struggle with scalability, limiting their applicability to large datasets, or make restrictive assumptions about feature-property relationships, hindering their ability to capture complex interactions. BoUTS's general and scalable feature selection algorithm surpasses these limitations to identify both universal features relevant to all datasets and task-specific features predictive for specific subsets. Evaluated on seven diverse chemical regression datasets, BoUTS achieves state-of-the-art feature sparsity while maintaining prediction accuracy comparable to specialized methods. Notably, BoUTS's universal features enable domain-specific knowledge transfer between datasets, and suggest deep connections in seemingly-disparate chemical datasets. We expect these results to have important repercussions in manually-guided inverse problems. Beyond its current application, BoUTS holds immense potential for elucidating data-poor systems by leveraging information from similar data-rich systems. BoUTS represents a significant leap in cross-domain feature selection, potentially leading to advancements in various scientific fields.

Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images. However, their inference process characteristically requires numerous, potentially hundreds, of iterative steps, which could exaggerate the problem of exposure bias due to the training and inference discrepancy. Previous work has attempted to mitigate this issue by perturbing inputs during training, which consequently mandates the retraining of the DPM. In this work, we conduct a systematic study of exposure bias in DPM and, intriguingly, we find that the exposure bias could be alleviated with a novel sampling method that we propose, without retraining the model. We empirically and theoretically show that, during inference, for each backward time step $t$ and corresponding state $\hat{x}_t$, there might exist another time step $t_s$ which exhibits superior coupling with $\hat{x}_t$. Based on this finding, we introduce a sampling method named Time-Shift Sampler. Our framework can be seamlessly integrated to existing sampling algorithms, such as DDPM, DDIM and other high-order solvers, inducing merely minimal additional computations. Experimental results show our method brings significant and consistent improvements in FID scores on different datasets and sampling methods. For example, integrating Time-Shift Sampler to F-PNDM yields a FID=3.88, achieving 44.49\% improvements as compared to F-PNDM, on CIFAR-10 with 10 sampling steps, which is more performant than the vanilla DDIM with 100 sampling steps. Our code is available at //github.com/Mingxiao-Li/TS-DPM.

Cross-modal retrieval (CMR) aims to establish interaction between different modalities, among which supervised CMR is emerging due to its flexibility in learning semantic category discrimination. Despite the remarkable performance of previous supervised CMR methods, much of their success can be attributed to the well-annotated data. However, even for unimodal data, precise annotation is expensive and time-consuming, and it becomes more challenging with the multimodal scenario. In practice, massive multimodal data are collected from the Internet with coarse annotation, which inevitably introduces noisy labels. Training with such misleading labels would bring two key challenges -- enforcing the multimodal samples to \emph{align incorrect semantics} and \emph{widen the heterogeneous gap}, resulting in poor retrieval performance. To tackle these challenges, this work proposes UOT-RCL, a Unified framework based on Optimal Transport (OT) for Robust Cross-modal Retrieval. First, we propose a semantic alignment based on partial OT to progressively correct the noisy labels, where a novel cross-modal consistent cost function is designed to blend different modalities and provide precise transport cost. Second, to narrow the discrepancy in multi-modal data, an OT-based relation alignment is proposed to infer the semantic-level cross-modal matching. Both of these two components leverage the inherent correlation among multi-modal data to facilitate effective cost function. The experiments on three widely-used cross-modal retrieval datasets demonstrate that our UOT-RCL surpasses the state-of-the-art approaches and significantly improves the robustness against noisy labels.

This paper evaluated the impact of synthetic images on Morphing Attack Detection (MAD) using a Siamese network with a semi-hard-loss function. Intra and cross-dataset evaluations were performed to measure synthetic image generalisation capabilities using a cross-dataset for evaluation. Three different pre-trained networks were used as feature extractors from traditional MobileNetV2, MobileNetV3 and EfficientNetB0. Our results show that MAD trained on EfficientNetB0 from FERET, FRGCv2, and FRLL can reach a lower error rate in comparison with SOTA. Conversely, worse performances were reached when the system was trained only with synthetic images. A mixed approach (synthetic + digital) database may help to improve MAD and reduce the error rate. This fact shows that we still need to keep going with our efforts to include synthetic images in the training process.

Gaussian-Bernoulli restricted Boltzmann machines (GBRBMs) are often used for semi-supervised anomaly detection, where they are trained using only normal data points. In GBRBM-based anomaly detection, normal and anomalous data are classified based on a score that is identical to an energy function of the marginal GBRBM. However, the classification threshold is difficult to set to an appropriate value, as this score cannot be interpreted. In this study, we propose a measure that improves score's interpretability based on its cumulative distribution, and establish a guideline for setting the threshold using the interpretable measure. The results of numerical experiments show that the guideline is reasonable when setting the threshold solely using normal data points. Moreover, because identifying the measure involves computationally infeasible evaluation of the minimum score value, we also propose an evaluation method for the minimum score based on simulated annealing, which is widely used for optimization problems. The proposed evaluation method was also validated using numerical experiments.

While privacy perceptions and behaviors have been investigated in Western societies, little is known about these issues in non-Western societies. To bridge this gap, we interviewed 30 Google personal account holders in Saudi Arabia about their privacy perceptions and behaviors regarding the activity data that Google saves about them. Our study focuses on Google's Activity Controls, which enable users to control whether, and how, Google saves their Web \& App Activity, Location History, and YouTube History. Our results show that although most participants have some level of awareness about Google's data practices and the Activity Controls, many have only vague awareness, and the majority have not used the available controls. When participants viewed their saved activity data, many were surprised by what had been saved. While many participants find Google's use of their data to improve the services provided to them acceptable, the majority find the use of their data for ad purposes unacceptable. We observe that our Saudi participants exhibit similar trends and patterns in privacy awareness, attitudes, preferences, concerns, and behaviors to what has been found in studies in the US. Our results emphasize the need for: 1) improved techniques to inform users about privacy settings during account sign-up, to remind users about their settings, and to raise awareness about privacy settings; 2) improved privacy setting interfaces to reduce the costs that deter many users from changing the settings; and 3) further research to explore privacy concerns in non-Western cultures.

Many people are interested in ChatGPT since it has become a prominent AIGC model that provides high-quality responses in various contexts, such as software development and maintenance. Misuse of ChatGPT might cause significant issues, particularly in public safety and education, despite its immense potential. The majority of researchers choose to publish their work on Arxiv. The effectiveness and originality of future work depend on the ability to detect AI components in such contributions. To address this need, this study will analyze a method that can see purposely manufactured content that academic organizations use to post on Arxiv. For this study, a dataset was created using physics, mathematics, and computer science articles. Using the newly built dataset, the following step is to put originality.ai through its paces. The statistical analysis shows that Originality.ai is very accurate, with a rate of 98%.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司