The summary receiver operating characteristic (SROC) curve has been recommended as one important meta-analytical summary to represent the accuracy of a diagnostic test in the presence of heterogeneous cutoff values. However, selective publication of diagnostic studies for meta-analysis can induce publication bias (PB) on the estimate of the SROC curve. Several sensitivity analysis methods have been developed to quantify PB on the SROC curve, and all these methods utilize parametric selection functions to model the selective publication mechanism. The main contribution of this article is to propose a new sensitivity analysis approach that derives the worst-case bounds for the SROC curve by adopting nonparametric selection functions under minimal assumptions. The estimation procedures of the worst-case bounds use the Monte Carlo method to obtain the SROC curves along with the corresponding area under the curves in the worst case where the maximum possible PB under a range of marginal selection probabilities is considered. We apply the proposed method to a real-world meta-analysis to show that the worst-case bounds of the SROC curves can provide useful insights for discussing the robustness of meta-analytical findings on diagnostic test accuracy.
Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low-rank approximation algorithms such as the randomized SVD and randomized Nystr\"om approximation, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.
The adaptive quasi-likelihood analysis is developed for a degenerate diffusion process. Asymptotic normality and moment convergence are proved for the quasi-maximum likelihood estimators and quasi-Bayesian estimators, in the adaptive scheme.
Explicit time integration schemes coupled with Galerkin discretizations of time-dependent partial differential equations require solving a linear system with the mass matrix at each time step. For applications in structural dynamics, the solution of the linear system is frequently approximated through so-called mass lumping, which consists in replacing the mass matrix by some diagonal approximation. Mass lumping has been widely used in engineering practice for decades already and has a sound mathematical theory supporting it for finite element methods using the classical Lagrange basis. However, the theory for more general basis functions is still missing. Our paper partly addresses this shortcoming. Some special and practically relevant properties of lumped mass matrices are proved and we discuss how these properties naturally extend to banded and Kronecker product matrices whose structure allows to solve linear systems very efficiently. Our theoretical results are applied to isogeometric discretizations but are not restricted to them.
Learning unknown stochastic differential equations (SDEs) from observed data is a significant and challenging task with applications in various fields. Current approaches often use neural networks to represent drift and diffusion functions, and construct likelihood-based loss by approximating the transition density to train these networks. However, these methods often rely on one-step stochastic numerical schemes, necessitating data with sufficiently high time resolution. In this paper, we introduce novel approximations to the transition density of the parameterized SDE: a Gaussian density approximation inspired by the random perturbation theory of dynamical systems, and its extension, the dynamical Gaussian mixture approximation (DynGMA). Benefiting from the robust density approximation, our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift and diffusion functions and computing the invariant distribution from trajectory data. And it is capable of handling trajectory data with low time resolution and variable, even uncontrollable, time step sizes, such as data generated from Gillespie's stochastic simulations. We then conduct several experiments across various scenarios to verify the advantages and robustness of the proposed method.
Several mixed-effects models for longitudinal data have been proposed to accommodate the non-linearity of late-life cognitive trajectories and assess the putative influence of covariates on it. No prior research provides a side-by-side examination of these models to offer guidance on their proper application and interpretation. In this work, we examined five statistical approaches previously used to answer research questions related to non-linear changes in cognitive aging: the linear mixed model (LMM) with a quadratic term, LMM with splines, the functional mixed model, the piecewise linear mixed model, and the sigmoidal mixed model. We first theoretically describe the models. Next, using data from two prospective cohorts with annual cognitive testing, we compared the interpretation of the models by investigating associations of education on cognitive change before death. Lastly, we performed a simulation study to empirically evaluate the models and provide practical recommendations. Except for the LMM-quadratic, the fit of all models was generally adequate to capture non-linearity of cognitive change and models were relatively robust. Although spline-based models have no interpretable nonlinearity parameters, their convergence was easier to achieve, and they allow graphical interpretation. In contrast, piecewise and sigmoidal models, with interpretable non-linear parameters, may require more data to achieve convergence.
For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator that was derived for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.
In the context of interactive theorem provers based on a dependent type theory, automation tactics (dedicated decision procedures, call of automated solvers, ...) are often limited to goals which are exactly in some expected logical fragment. This very often prevents users from applying these tactics in other contexts, even similar ones. This paper discusses the design and the implementation of pre-processing operations for automating formal proofs in the Coq proof assistant. It presents the implementation of a wide variety of predictible, atomic goal transformations, which can be composed in various ways to target different backends. A gallery of examples illustrates how it helps to expand significantly the power of automation engines.
By computing a feedback control via the linear quadratic regulator (LQR) approach and simulating a non-linear non-autonomous closed-loop system using this feedback, we combine two numerically challenging tasks. For the first task, the computation of the feedback control, we use the non-autonomous generalized differential Riccati equation (DRE), whose solution determines the time-varying feedback gain matrix. Regarding the second task, we want to be able to simulate non-linear closed-loop systems for which it is known that the regulator is only valid for sufficiently small perturbations. Thus, one easily runs into numerical issues in the integrators when the closed-loop control varies greatly. For these systems, e.g., the A-stable implicit Euler methods fails.\newline On the one hand, we implement non-autonomous versions of splitting schemes and BDF methods for the solution of our non-autonomous DREs. These are well-established DRE solvers in the autonomous case. On the other hand, to tackle the numerical issues in the simulation of the non-linear closed-loop system, we apply a fractional-step-theta scheme with time-adaptivity tuned specifically to this kind of challenge. That is, we additionally base the time-adaptivity on the activity of the control. We compare this approach to the more classical error-based time-adaptivity.\newline We describe techniques to make these two tasks computable in a reasonable amount of time and are able to simulate closed-loop systems with strongly varying controls, while avoiding numerical issues. Our time-adaptivity approach requires fewer time steps than the error-based alternative and is more reliable.
We perturb a real matrix $A$ of full column rank, and derive lower bounds for the smallest singular values of the perturbed matrix, in terms of normwise absolute perturbations. Our bounds, which extend existing lower-order expressions, demonstrate the potential increase in the smallest singular values, and represent a qualitative model for the increase in the small singular values after a matrix has been downcast to a lower arithmetic precision. Numerical experiments confirm the qualitative validity of this model and its ability to predict singular values changes in the presence of decreased arithmetic precision.
We present a unification and generalization of sequentially and hierarchically semi-separable (SSS and HSS) matrices called tree semi-separable (TSS) matrices. Our main result is to show that any dense matrix can be expressed in a TSS format. Here, the dimensions of the generators are specified by the ranks of the Hankel blocks of the matrix. TSS matrices satisfy a graph-induced rank structure (GIRS) property. It is shown that TSS matrices generalize the algebraic properties of SSS and HSS matrices under addition, products, and inversion. Subsequently, TSS matrices admit linear time matrix-vector multiply, matrix-matrix multiply, matrix-matrix addition, inversion, and solvers.