亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores the application of Artificial Intelligence (AI) techniques for generating the trajectories of fleets of Unmanned Aerial Vehicles (UAVs). The two main challenges addressed include accurately predicting the paths of UAVs and efficiently avoiding collisions between them. Firstly, the paper systematically applies a diverse set of activation functions to a Feedforward Neural Network (FFNN) with a single hidden layer, which enhances the accuracy of the predicted path compared to previous work. Secondly, we introduce a novel activation function, AdaptoSwelliGauss, which is a sophisticated fusion of Swish and Elliott activations, seamlessly integrated with a scaled and shifted Gaussian component. Swish facilitates smooth transitions, Elliott captures abrupt trajectory changes, and the scaled and shifted Gaussian enhances robustness against noise. This dynamic combination is specifically designed to excel in capturing the complexities of UAV trajectory prediction. This new activation function gives substantially better accuracy than all existing activation functions. Thirdly, we propose a novel Integrated Collision Detection, Avoidance, and Batching (ICDAB) strategy that merges two complementary UAV collision avoidance techniques: changing UAV trajectories and altering their starting times, also referred to as batching. This integration helps overcome the disadvantages of both - reduction in the number of trajectory manipulations, which avoids overly convoluted paths in the first technique, and smaller batch sizes, which reduce overall takeoff time in the second.

相關內容

在人工神經網絡中,給定一個輸入或一組輸入,節點的激活函數定義該節點的輸出。一個標準集成電路可以看作是一個由激活函數組成的數字網絡,根據輸入的不同,激活函數可以是開(1)或關(0)。這類似于神經網絡中的線性感知器的行為。然而,只有非線性激活函數允許這樣的網絡只使用少量的節點來計算重要問題,并且這樣的激活函數被稱為非線性。

This paper presents a systematic methodology for the discretization and reduction of a class of one-dimensional Partial Differential Equations (PDEs) with inputs and outputs collocated at the spatial boundaries. The class of system that we consider is known as Boundary-Controlled Port-Hamiltonian Systems (BC-PHSs) and covers a wide class of Hyperbolic PDEs with a large type of boundary inputs and outputs. This is, for instance, the case of waves and beams with Neumann, Dirichlet, or mixed boundary conditions. Based on a Partitioned Finite Element Method (PFEM), we develop a numerical scheme for the structure-preserving spatial discretization for the class of one-dimensional BC-PHSs. We show that if the initial PDE is passive (or impedance energy preserving), the discretized model also is. In addition and since the discretized model or Full Order Model (FOM) can be of large dimension, we recall the standard Loewner framework for the Model Order Reduction (MOR) using frequency domain interpolation. We recall the main steps to produce a Reduced Order Model (ROM) that approaches the FOM in a given range of frequencies. We summarize the steps to follow in order to obtain a ROM that preserves the passive structure as well. Finally, we provide a constructive way to build a projector that allows to recover the physical meaning of the state variables from the ROM to the FOM. We use the one-dimensional wave equation and the Timoshenko beam as examples to show the versatility of the proposed approach.

Goal representation affects the performance of Hierarchical Reinforcement Learning (HRL) algorithms by decomposing the complex learning problem into easier subtasks. Recent studies show that representations that preserve temporally abstract environment dynamics are successful in solving difficult problems and provide theoretical guarantees for optimality. These methods however cannot scale to tasks where environment dynamics increase in complexity i.e. the temporally abstract transition relations depend on larger number of variables. On the other hand, other efforts have tried to use spatial abstraction to mitigate the previous issues. Their limitations include scalability to high dimensional environments and dependency on prior knowledge. In this paper, we propose a novel three-layer HRL algorithm that introduces, at different levels of the hierarchy, both a spatial and a temporal goal abstraction. We provide a theoretical study of the regret bounds of the learned policies. We evaluate the approach on complex continuous control tasks, demonstrating the effectiveness of spatial and temporal abstractions learned by this approach. Find open-source code at //github.com/cosynus-lix/STAR.

The significant advancements in large language models (LLMs) give rise to a promising research direction, i.e., leveraging LLMs as recommenders (LLMRec). The efficacy of LLMRec arises from the open-world knowledge and reasoning capabilities inherent in LLMs. LLMRec acquires the recommendation capabilities through instruction tuning based on user interaction data. However, in order to protect user privacy and optimize utility, it is also crucial for LLMRec to intentionally forget specific user data, which is generally referred to as recommendation unlearning. In the era of LLMs, recommendation unlearning poses new challenges for LLMRec in terms of \textit{inefficiency} and \textit{ineffectiveness}. Existing unlearning methods require updating billions of parameters in LLMRec, which is costly and time-consuming. Besides, they always impact the model utility during the unlearning process. To this end, we propose \textbf{E2URec}, the first \underline{E}fficient and \underline{E}ffective \underline{U}nlearning method for LLM\underline{Rec}. Our proposed E2URec enhances the unlearning efficiency by updating only a few additional LoRA parameters, and improves the unlearning effectiveness by employing a teacher-student framework, where we maintain multiple teacher networks to guide the unlearning process. Extensive experiments show that E2URec outperforms state-of-the-art baselines on two real-world datasets. Specifically, E2URec can efficiently forget specific data without affecting recommendation performance. The source code is at \url{//github.com/justarter/E2URec}.

Reinforcement learning algorithms utilizing policy gradients (PG) to optimize Conditional Value at Risk (CVaR) face significant challenges with sample inefficiency, hindering their practical applications. This inefficiency stems from two main facts: a focus on tail-end performance that overlooks many sampled trajectories, and the potential of gradient vanishing when the lower tail of the return distribution is overly flat. To address these challenges, we propose a simple mixture policy parameterization. This method integrates a risk-neutral policy with an adjustable policy to form a risk-averse policy. By employing this strategy, all collected trajectories can be utilized for policy updating, and the issue of vanishing gradients is counteracted by stimulating higher returns through the risk-neutral component, thus lifting the tail and preventing flatness. Our empirical study reveals that this mixture parameterization is uniquely effective across a variety of benchmark domains. Specifically, it excels in identifying risk-averse CVaR policies in some Mujoco environments where the traditional CVaR-PG fails to learn a reasonable policy.

Monocular Human Pose Estimation (HPE) aims at determining the 3D positions of human joints from a single 2D image captured by a camera. However, a single 2D point in the image may correspond to multiple points in 3D space. Typically, the uniqueness of the 2D-3D relationship is approximated using an orthographic or weak-perspective camera model. In this study, instead of relying on approximations, we advocate for utilizing the full perspective camera model. This involves estimating camera parameters and establishing a precise, unambiguous 2D-3D relationship. To do so, we introduce the EPOCH framework, comprising two main components: the pose lifter network (LiftNet) and the pose regressor network (RegNet). LiftNet utilizes the full perspective camera model to precisely estimate the 3D pose in an unsupervised manner. It takes a 2D pose and camera parameters as inputs and produces the corresponding 3D pose estimation. These inputs are obtained from RegNet, which starts from a single image and provides estimates for the 2D pose and camera parameters. RegNet utilizes only 2D pose data as weak supervision. Internally, RegNet predicts a 3D pose, which is then projected to 2D using the estimated camera parameters. This process enables RegNet to establish the unambiguous 2D-3D relationship. Our experiments show that modeling the lifting as an unsupervised task with a camera in-the-loop results in better generalization to unseen data. We obtain state-of-the-art results for the 3D HPE on the Human3.6M and MPI-INF-3DHP datasets. Our code is available at: [Github link upon acceptance, see supplementary materials].

In this paper, we establish the second-order randomized identification capacity (RID capacity) of the Additive White Gaussian Noise Channel (AWGNC). On the one hand, we obtain a refined version of Hayashi's theorem to prove the achievability part. On the other, we investigate the relationship between identification and channel resolvability, then we propose a finer quantization method to prove the converse part. Consequently, the second-order RID capacity of the AWGNC has the same form as the second-order transmission capacity. The only difference is that the maximum number of messages in RID scales double exponentially in the blocklength.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司