亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce MuseChat, an innovative dialog-based music recommendation system. This unique platform not only offers interactive user engagement but also suggests music tailored for input videos, so that users can refine and personalize their music selections. In contrast, previous systems predominantly emphasized content compatibility, often overlooking the nuances of users' individual preferences. For example, all the datasets only provide basic music-video pairings or such pairings with textual music descriptions. To address this gap, our research offers three contributions. First, we devise a conversation-synthesis method that simulates a two-turn interaction between a user and a recommendation system, which leverages pre-trained music tags and artist information. In this interaction, users submit a video to the system, which then suggests a suitable music piece with a rationale. Afterwards, users communicate their musical preferences, and the system presents a refined music recommendation with reasoning. Second, we introduce a multi-modal recommendation engine that matches music either by aligning it with visual cues from the video or by harmonizing visual information, feedback from previously recommended music, and the user's textual input. Third, we bridge music representations and textual data with a Large Language Model(Vicuna-7B). This alignment equips MuseChat to deliver music recommendations and their underlying reasoning in a manner resembling human communication. Our evaluations show that MuseChat surpasses existing state-of-the-art models in music retrieval tasks and pioneers the integration of the recommendation process within a natural language framework.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 近似 · 前向 · 潛在 · 3D ·
2023 年 11 月 27 日

We introduce Gaussian Articulated Template Model GART, an explicit, efficient, and expressive representation for non-rigid articulated subject capturing and rendering from monocular videos. GART utilizes a mixture of moving 3D Gaussians to explicitly approximate a deformable subject's geometry and appearance. It takes advantage of a categorical template model prior (SMPL, SMAL, etc.) with learnable forward skinning while further generalizing to more complex non-rigid deformations with novel latent bones. GART can be reconstructed via differentiable rendering from monocular videos in seconds or minutes and rendered in novel poses faster than 150fps.

Since American Sign Language (ASL) has no standard written form, Deaf signers frequently share videos in order to communicate in their native language. However, since both hands and face convey critical linguistic information in signed languages, sign language videos cannot preserve signer privacy. While signers have expressed interest, for a variety of applications, in sign language video anonymization that would effectively preserve linguistic content, attempts to develop such technology have had limited success, given the complexity of hand movements and facial expressions. Existing approaches rely predominantly on precise pose estimations of the signer in video footage and often require sign language video datasets for training. These requirements prevent them from processing videos 'in the wild,' in part because of the limited diversity present in current sign language video datasets. To address these limitations, our research introduces DiffSLVA, a novel methodology that utilizes pre-trained large-scale diffusion models for zero-shot text-guided sign language video anonymization. We incorporate ControlNet, which leverages low-level image features such as HED (Holistically-Nested Edge Detection) edges, to circumvent the need for pose estimation. Additionally, we develop a specialized module dedicated to capturing facial expressions, which are critical for conveying essential linguistic information in signed languages. We then combine the above methods to achieve anonymization that better preserves the essential linguistic content of the original signer. This innovative methodology makes possible, for the first time, sign language video anonymization that could be used for real-world applications, which would offer significant benefits to the Deaf and Hard-of-Hearing communities. We demonstrate the effectiveness of our approach with a series of signer anonymization experiments.

Understanding how the 3D scene evolves is vital for making decisions in autonomous driving. Most existing methods achieve this by predicting the movements of object boxes, which cannot capture more fine-grained scene information. In this paper, we explore a new framework of learning a world model, OccWorld, in the 3D Occupancy space to simultaneously predict the movement of the ego car and the evolution of the surrounding scenes. We propose to learn a world model based on 3D occupancy rather than 3D bounding boxes and segmentation maps for three reasons: 1) expressiveness. 3D occupancy can describe the more fine-grained 3D structure of the scene; 2) efficiency. 3D occupancy is more economical to obtain (e.g., from sparse LiDAR points). 3) versatility. 3D occupancy can adapt to both vision and LiDAR. To facilitate the modeling of the world evolution, we learn a reconstruction-based scene tokenizer on the 3D occupancy to obtain discrete scene tokens to describe the surrounding scenes. We then adopt a GPT-like spatial-temporal generative transformer to generate subsequent scene and ego tokens to decode the future occupancy and ego trajectory. Extensive experiments on the widely used nuScenes benchmark demonstrate the ability of OccWorld to effectively model the evolution of the driving scenes. OccWorld also produces competitive planning results without using instance and map supervision. Code: //github.com/wzzheng/OccWorld.

Social media play a significant role in shaping public opinion and influencing ideological communities through information propagation. Our demo InfoPattern centers on the interplay between language and human ideology. The demo (Code: //github.com/blender-nlp/InfoPattern ) is capable of: (1) red teaming to simulate adversary responses from opposite ideology communities; (2) stance detection to identify the underlying political sentiments in each message; (3) information propagation graph discovery to reveal the evolution of claims across various communities over time. (Live Demo: //incas.csl.illinois.edu/blender/About )

Despite breakthroughs in audio generation models, their capabilities are often confined to domain-specific conditions such as speech transcriptions and audio captions. However, real-world audio creation aims to generate harmonious audio containing various elements such as speech, music, and sound effects with controllable conditions, which is challenging to address using existing audio generation systems. We present WavJourney, a novel framework that leverages Large Language Models (LLMs) to connect various audio models for audio creation. WavJourney allows users to create storytelling audio content with diverse audio elements simply from textual descriptions. Specifically, given a text instruction, WavJourney first prompts LLMs to generate an audio script that serves as a structured semantic representation of audio elements. The audio script is then converted into a computer program, where each line of the program calls a task-specific audio generation model or computational operation function. The computer program is then executed to obtain a compositional and interpretable solution for audio creation. Experimental results suggest that WavJourney is capable of synthesizing realistic audio aligned with textually-described semantic, spatial and temporal conditions, achieving state-of-the-art results on text-to-audio generation benchmarks. Additionally, we introduce a new multi-genre story benchmark. Subjective evaluations demonstrate the potential of WavJourney in crafting engaging storytelling audio content from text. We further demonstrate that WavJourney can facilitate human-machine co-creation in multi-round dialogues. To foster future research, the code and synthesized audio are available at: //audio-agi.github.io/WavJourney_demopage/.

We introduce a pipeline for time series classification that extracts features based on the iterated-sums signature (ISS) and then applies a linear classifier. These features are intrinsically nonlinear, capture chronological information, and, under certain settings, are invariant to time-warping. We are competitive with state-of-the-art methods on the UCR archive, both in terms of accuracy and speed. We make our code available at \url{//github.com/irkri/fruits}.

Nowadays, the research on Large Vision-Language Models (LVLMs) has been significantly promoted thanks to the success of Large Language Models (LLM). Nevertheless, these Vision-Language Models (VLMs) are suffering from the drawback of hallucination -- due to insufficient understanding of vision and language modalities, VLMs may generate incorrect perception information when doing downstream applications, for example, captioning a non-existent entity. To address the hallucination phenomenon, on the one hand, we introduce a Contrastive Instruction Evaluation Method (CIEM), which is an automatic pipeline that leverages an annotated image-text dataset coupled with an LLM to generate factual/contrastive question-answer pairs for the evaluation of the hallucination of VLMs. On the other hand, based on CIEM, we further propose a new instruction tuning method called CIT (the abbreviation of Contrastive Instruction Tuning) to alleviate the hallucination of VLMs by automatically producing high-quality factual/contrastive question-answer pairs and corresponding justifications for model tuning. Through extensive experiments on CIEM and CIT, we pinpoint the hallucination issues commonly present in existing VLMs, the disability of the current instruction-tuning dataset to handle the hallucination phenomenon and the superiority of CIT-tuned VLMs over both CIEM and public datasets.

In the era of extensive intersection between art and Artificial Intelligence (AI), such as image generation and fiction co-creation, AI for music remains relatively nascent, particularly in music understanding. This is evident in the limited work on deep music representations, the scarcity of large-scale datasets, and the absence of a universal and community-driven benchmark. To address this issue, we introduce the Music Audio Representation Benchmark for universaL Evaluation, termed MARBLE. It aims to provide a benchmark for various Music Information Retrieval (MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels, including acoustic, performance, score, and high-level description. We then establish a unified protocol based on 14 tasks on 8 public-available datasets, providing a fair and standard assessment of representations of all open-sourced pre-trained models developed on music recordings as baselines. Besides, MARBLE offers an easy-to-use, extendable, and reproducible suite for the community, with a clear statement on copyright issues on datasets. Results suggest recently proposed large-scale pre-trained musical language models perform the best in most tasks, with room for further improvement. The leaderboard and toolkit repository are published at //marble-bm.shef.ac.uk to promote future music AI research.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司