As recommender systems are indispensable in various domains such as job searching and e-commerce, providing equitable recommendations to users with different sensitive attributes becomes an imperative requirement. Prior approaches for enhancing fairness in recommender systems presume the availability of all sensitive attributes, which can be difficult to obtain due to privacy concerns or inadequate means of capturing these attributes. In practice, the efficacy of these approaches is limited, pushing us to investigate ways of promoting fairness with limited sensitive attribute information. Toward this goal, it is important to reconstruct missing sensitive attributes. Nevertheless, reconstruction errors are inevitable due to the complexity of real-world sensitive attribute reconstruction problems and legal regulations. Thus, we pursue fair learning methods that are robust to reconstruction errors. To this end, we propose Distributionally Robust Fair Optimization (DRFO), which minimizes the worst-case unfairness over all potential probability distributions of missing sensitive attributes instead of the reconstructed one to account for the impact of the reconstruction errors. We provide theoretical and empirical evidence to demonstrate that our method can effectively ensure fairness in recommender systems when only limited sensitive attributes are accessible.
Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.
Tabular synthesis models remain ineffective at capturing complex dependencies, and the quality of synthetic data is still insufficient for comprehensive downstream tasks, such as prediction under distribution shifts, automated decision-making, and cross-table understanding. A major challenge is the lack of prior knowledge about underlying structures and high-order relationships in tabular data. We argue that a systematic evaluation on high-order structural information for tabular data synthesis is the first step towards solving the problem. In this paper, we introduce high-order structural causal information as natural prior knowledge and provide a benchmark framework for the evaluation of tabular synthesis models. The framework allows us to generate benchmark datasets with a flexible range of data generation processes and to train tabular synthesis models using these datasets for further evaluation. We propose multiple benchmark tasks, high-order metrics, and causal inference tasks as downstream tasks for evaluating the quality of synthetic data generated by the trained models. Our experiments demonstrate to leverage the benchmark framework for evaluating the model capability of capturing high-order structural causal information. Furthermore, our benchmarking results provide an initial assessment of state-of-the-art tabular synthesis models. They have clearly revealed significant gaps between ideal and actual performance and how baseline methods differ. Our benchmark framework is available at URL //github.com/TURuibo/CauTabBench.
Federated multi-view clustering offers the potential to develop a global clustering model using data distributed across multiple devices. However, current methods face challenges due to the absence of label information and the paramount importance of data privacy. A significant issue is the feature heterogeneity across multi-view data, which complicates the effective mining of complementary clustering information. Additionally, the inherent incompleteness of multi-view data in a distributed setting can further complicate the clustering process. To address these challenges, we introduce a federated incomplete multi-view clustering framework with heterogeneous graph neural networks (FIM-GNNs). In the proposed FIM-GNNs, autoencoders built on heterogeneous graph neural network models are employed for feature extraction of multi-view data at each client site. At the server level, heterogeneous features from overlapping samples of each client are aggregated into a global feature representation. Global pseudo-labels are generated at the server to enhance the handling of incomplete view data, where these labels serve as a guide for integrating and refining the clustering process across different data views. Comprehensive experiments have been conducted on public benchmark datasets to verify the performance of the proposed FIM-GNNs in comparison with state-of-the-art algorithms.
Inferring the causal structure underlying stochastic dynamical systems from observational data holds great promise in domains ranging from science and health to finance. Such processes can often be accurately modeled via stochastic differential equations (SDEs), which naturally imply causal relationships via "which variables enter the differential of which other variables". In this paper, we develop a kernel-based test of conditional independence (CI) on "path-space" -- e.g., solutions to SDEs, but applicable beyond that -- by leveraging recent advances in signature kernels. We demonstrate strictly superior performance of our proposed CI test compared to existing approaches on path-space and provide theoretical consistency results. Then, we develop constraint-based causal discovery algorithms for acyclic stochastic dynamical systems (allowing for self-loops) that leverage temporal information to recover the entire directed acyclic graph. Assuming faithfulness and a CI oracle, we show that our algorithms are sound and complete. We empirically verify that our developed CI test in conjunction with the causal discovery algorithms outperform baselines across a range of settings.
In the evolving landscape of digital commerce, adaptive dynamic pricing strategies are essential for gaining a competitive edge. This paper introduces novel {\em doubly nonparametric random utility models} that eschew traditional parametric assumptions used in estimating consumer demand's mean utility function and noise distribution. Existing nonparametric methods like multi-scale {\em Distributional Nearest Neighbors (DNN and TDNN)}, initially designed for offline regression, face challenges in dynamic online pricing due to design limitations, such as the indirect observability of utility-related variables and the absence of uniform convergence guarantees. We address these challenges with innovative population equations that facilitate nonparametric estimation within decision-making frameworks and establish new analytical results on the uniform convergence rates of DNN and TDNN, enhancing their applicability in dynamic environments. Our theoretical analysis confirms that the statistical learning rates for the mean utility function and noise distribution are minimax optimal. We also derive a regret bound that illustrates the critical interaction between model dimensionality and noise distribution smoothness, deepening our understanding of dynamic pricing under varied market conditions. These contributions offer substantial theoretical insights and practical tools for implementing effective, data-driven pricing strategies, advancing the theoretical framework of pricing models and providing robust methodologies for navigating the complexities of modern markets.
Data sharing enables critical advances in many research areas and business applications, but it may lead to inadvertent disclosure of sensitive summary statistics (e.g., means or quantiles). Existing literature only focuses on protecting a single confidential quantity, while in practice, data sharing involves multiple sensitive statistics. We propose a novel framework to define, analyze, and protect multi-secret summary statistics privacy in data sharing. Specifically, we measure the privacy risk of any data release mechanism by the worst-case probability of an attacker successfully inferring summary statistic secrets. Given an attacker's objective spanning from inferring a subset to the entirety of summary statistic secrets, we systematically design and analyze tailored privacy metrics. Defining the distortion as the worst-case distance between the original and released data distribution, we analyze the tradeoff between privacy and distortion. Our contribution also includes designing and analyzing data release mechanisms tailored for different data distributions and secret types. Evaluations on real-world data demonstrate the effectiveness of our mechanisms in practical applications.
Training autonomous agents with sparse rewards is a long-standing problem in online reinforcement learning (RL), due to low data efficiency. Prior work overcomes this challenge by extracting useful knowledge from offline data, often accomplished through the learning of action distribution from offline data and utilizing the learned distribution to facilitate online RL. However, since the offline data are given and fixed, the extracted knowledge is inherently limited, making it difficult to generalize to new tasks. We propose a novel approach that leverages offline data to learn a generative diffusion model, coined as Adaptive Trajectory Diffuser (ATraDiff). This model generates synthetic trajectories, serving as a form of data augmentation and consequently enhancing the performance of online RL methods. The key strength of our diffuser lies in its adaptability, allowing it to effectively handle varying trajectory lengths and mitigate distribution shifts between online and offline data. Because of its simplicity, ATraDiff seamlessly integrates with a wide spectrum of RL methods. Empirical evaluation shows that ATraDiff consistently achieves state-of-the-art performance across a variety of environments, with particularly pronounced improvements in complicated settings. Our code and demo video are available at //atradiff.github.io .
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.