Although Score Distillation Sampling (SDS) has exhibited remarkable performance in conditional 3D content generation, a comprehensive understanding of its formulation is still lacking, hindering the development of 3D generation. In this work, we decompose SDS as a combination of three functional components, namely mode-seeking, mode-disengaging and variance-reducing terms, analyzing the properties of each. We show that problems such as over-smoothness and implausibility result from the intrinsic deficiency of the first two terms and propose a more advanced variance-reducing term than that introduced by SDS. Based on the analysis, we propose a simple yet effective approach named Stable Score Distillation (SSD) which strategically orchestrates each term for high-quality 3D generation and can be readily incorporated to various 3D generation frameworks and 3D representations. Extensive experiments validate the efficacy of our approach, demonstrating its ability to generate high-fidelity 3D content without succumbing to issues such as over-smoothness.
Recent advances in visual reasoning (VR), particularly with the aid of Large Vision-Language Models (VLMs), show promise but require access to large-scale datasets and face challenges such as high computational costs and limited generalization capabilities. Compositional visual reasoning approaches have emerged as effective strategies; however, they heavily rely on the commonsense knowledge encoded in Large Language Models (LLMs) to perform planning, reasoning, or both, without considering the effect of their decisions on the visual reasoning process, which can lead to errors or failed procedures. To address these challenges, we introduce HYDRA, a multi-stage dynamic compositional visual reasoning framework designed for reliable and incrementally progressive general reasoning. HYDRA integrates three essential modules: a planner, a Reinforcement Learning (RL) agent serving as a cognitive controller, and a reasoner. The planner and reasoner modules utilize an LLM to generate instruction samples and executable code from the selected instruction, respectively, while the RL agent dynamically interacts with these modules, making high-level decisions on selection of the best instruction sample given information from the historical state stored through a feedback loop. This adaptable design enables HYDRA to adjust its actions based on previous feedback received during the reasoning process, leading to more reliable reasoning outputs and ultimately enhancing its overall effectiveness. Our framework demonstrates state-of-the-art performance in various VR tasks on four different widely-used datasets.
Large Language Models have become the de facto approach to sequence-to-sequence text generation tasks, but for specialized tasks/domains, a pretrained LLM lacks specific capabilities to produce accurate or well-formatted responses. Supervised fine-tuning specializes a LLM by training it on dataset of example prompts with target responses, but real-world data tends to be noisy. While many fine-tuning algorithms exist, here we consider a \emph{data-centric AI} perspective on LLM fine-tuning, studying how to \emph{systematically} curate the training dataset to improve the LLM produced via \emph{any} fine-tuning algorithm. We introduce an automated data curation pipeline CLEAR (Confidence-based LLM Evaluation And Rectification) for instruction tuning datasets, that can be used with any LLM and fine-tuning procedure. CLEAR estimates which training data is low-quality and either filters or corrects it. Automatically identifying which data to filter or correct is done via LLM-derived confidence estimates, to ensure only confident modifications to the dataset. Unlike existing data curation techniques, CLEAR is a comprehensive framework that can improve a dataset (and trained model outputs) without additional fine-tuning computations. We don't assume access to a stronger LLM than the model being fine-tuned (e.g.\ relying on GPT-4 when fine-tuning GPT-3.5), to see whether CLEAR can meaningfully improve the capabilities of any LLM. Experiments reveal that CLEAR consistently improves the performance of fine-tuned models across many datasets and models (like GPT-3.5 and Llama2).
A novel method, the Pareto Envelope Augmented with Reinforcement Learning (PEARL), has been developed to address the challenges posed by multi-objective problems, particularly in the field of engineering where the evaluation of candidate solutions can be time-consuming. PEARL distinguishes itself from traditional policy-based multi-objective Reinforcement Learning methods by learning a single policy, eliminating the need for multiple neural networks to independently solve simpler sub-problems. Several versions inspired from deep learning and evolutionary techniques have been crafted, catering to both unconstrained and constrained problem domains. Curriculum Learning is harnessed to effectively manage constraints in these versions. PEARL's performance is first evaluated on classical multi-objective benchmarks. Additionally, it is tested on two practical PWR core Loading Pattern optimization problems to showcase its real-world applicability. The first problem involves optimizing the Cycle length and the rod-integrated peaking factor as the primary objectives, while the second problem incorporates the mean average enrichment as an additional objective. Furthermore, PEARL addresses three types of constraints related to boron concentration, peak pin burnup, and peak pin power. The results are systematically compared against conventional approaches. Notably, PEARL, specifically the PEARL-NdS variant, efficiently uncovers a Pareto front without necessitating additional efforts from the algorithm designer, as opposed to a single optimization with scaled objectives. It also outperforms the classical approach across multiple performance metrics, including the Hyper-volume.
The ever-evolving social media discourse has witnessed an overwhelming use of memes to express opinions or dissent. Besides being misused for spreading malcontent, they are mined by corporations and political parties to glean the public's opinion. Therefore, memes predominantly offer affect-enriched insights towards ascertaining the societal psyche. However, the current approaches are yet to model the affective dimensions expressed in memes effectively. They rely extensively on large multimodal datasets for pre-training and do not generalize well due to constrained visual-linguistic grounding. In this paper, we introduce MOOD (Meme emOtiOns Dataset), which embodies six basic emotions. We then present ALFRED (emotion-Aware muLtimodal Fusion foR Emotion Detection), a novel multimodal neural framework that (i) explicitly models emotion-enriched visual cues, and (ii) employs an efficient cross-modal fusion via a gating mechanism. Our investigation establishes ALFRED's superiority over existing baselines by 4.94% F1. Additionally, ALFRED competes strongly with previous best approaches on the challenging Memotion task. We then discuss ALFRED's domain-agnostic generalizability by demonstrating its dominance on two recently-released datasets - HarMeme and Dank Memes, over other baselines. Further, we analyze ALFRED's interpretability using attention maps. Finally, we highlight the inherent challenges posed by the complex interplay of disparate modality-specific cues toward meme analysis.
Calibration, which establishes the correlation between accuracy and model confidence, is important for LLM development. We design three off-the-shelf calibration methods based on self-consistency (Wang et al., 2022) for math reasoning tasks. Evaluation on two popular benchmarks (GSM8K and MathQA) using strong open-source LLMs (Mistral and LLaMA2), our methods better bridge model confidence and accuracy than existing methods based on p(True) (Kadavath et al., 2022) or logit (Kadavath et al., 2022).
Large Language Models (LLMs) have demonstrated remarkable capabilities in open-ended text generation tasks. However, the inherent open-ended nature of these tasks implies that there is always room for improvement in the quality of model responses. To address this challenge, various approaches have been proposed to enhance the performance of LLMs. There has been a growing focus on enabling LLMs to self-improve their response quality, thereby reducing the reliance on extensive human annotation efforts for collecting diverse and high-quality training data. Recently, prompting-based methods have been widely explored among self-improvement methods owing to their effectiveness, efficiency, and convenience. However, those methods usually require explicitly and thoroughly written rubrics as inputs to LLMs. It is expensive and challenging to manually derive and provide all necessary rubrics with a real-world complex goal for improvement (e.g., being more helpful and less harmful). To this end, we propose an ImPlicit Self-ImprovemenT (PIT) framework that implicitly learns the improvement goal from human preference data. PIT only requires preference data that are used to train reward models without extra human efforts. Specifically, we reformulate the training objective of reinforcement learning from human feedback (RLHF) -- instead of maximizing response quality for a given input, we maximize the quality gap of the response conditioned on a reference response. In this way, PIT is implicitly trained with the improvement goal of better aligning with human preferences. Experiments on two real-world datasets and one synthetic dataset show that our method significantly outperforms prompting-based methods.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.