亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate non-adaptive methods of deep ReLU neural network approximation of the solution $u$ to parametric and stochastic elliptic PDEs with lognormal inputs on non-compact set $\mathbb{R}^\infty$. The approximation error is measured in the norm of the Bochner space $L_2(\mathbb{R}^\infty, V, \gamma)$, where $\gamma$ is the tensor product standard Gaussian probability on $\mathbb{R}^\infty$ and $V$ is the energy space. The approximation is based on an $m$-term truncation of the Hermite generalized polynomial chaos expansion (gpc) of $u$. Under a certain assumption on $\ell_q$-summability condition for lognormal inputs ($0< q <\infty$), we proved that for every integer $n > 1$, one can construct a non-adaptive compactly supported deep ReLU neural network $\boldsymbol{\phi}_n$ of size not greater than $n$ on $\mathbb{R}^m$ with $m = \mathcal{O} (n/\log n)$, having $m$ outputs so that the summation constituted by replacing polynomials in the $m$-term truncation of Hermite gpc expansion by these $m$ outputs approximates $u$ with an error bound $\mathcal{O}\left(\left(n/\log n\right)^{-1/q}\right)$. This error bound is comparable to the error bound of the best approximation of $u$ by $n$-term truncations of Hermite gpc expansion which is $\mathcal{O}(n^{-1/q})$. We also obtained some results on similar problems for parametric and stochastic elliptic PDEs with affine inputs, based on the Jacobi and Taylor gpc expansions.

相關內容

We present a new finite-sample analysis of M-estimators of locations in $\mathbb{R}^d$ using the tool of the influence function. In particular, we show that the deviations of an M-estimator can be controlled thanks to its influence function (or its score function) and then, we use concentration inequality on M-estimators to investigate the robust estimation of the mean in high dimension in a corrupted setting (adversarial corruption setting) for bounded and unbounded score functions. For a sample of size $n$ and covariance matrix $\Sigma$, we attain the minimax speed $\sqrt{Tr(\Sigma)/n}+\sqrt{\|\Sigma\|_{op}\log(1/\delta)/n}$ with probability larger than $1-\delta$ in a heavy-tailed setting. One of the major advantages of our approach compared to others recently proposed is that our estimator is tractable and fast to compute even in very high dimension with a complexity of $O(nd\log(Tr(\Sigma)))$ where $n$ is the sample size and $\Sigma$ is the covariance matrix of the inliers. In practice, the code that we make available for this article proves to be very fast.

We construct several classes of neural networks with ReLU and BiSU (Binary Step Unit) activations, which exactly emulate the lowest order Finite Element (FE) spaces on regular, simplicial partitions of polygonal and polyhedral domains $\Omega \subset \mathbb{R}^d$, $d=2,3$. For continuous, piecewise linear (CPwL) functions, our constructions generalize previous results in that arbitrary, regular simplicial partitions of $\Omega$ are admitted, also in arbitrary dimension $d\geq 2$. Vector-valued elements emulated include the classical Raviart-Thomas and the first family of N\'{e}d\'{e}lec edge elements on triangles and tetrahedra. Neural Networks emulating these FE spaces are required in the correct approximation of boundary value problems of electromagnetism in nonconvex polyhedra $\Omega \subset \mathbb{R}^3$, thereby constituting an essential ingredient in the application of e.g. the methodology of ``physics-informed NNs'' or ``deep Ritz methods'' to electromagnetic field simulation via deep learning techniques. They satisfy exact (De Rham) sequence properties, and also spawn discrete boundary complexes on $\partial\Omega$ which satisfy exact sequence properties for the surface divergence and curl operators $\mathrm{div}_\Gamma$ and $\mathrm{curl}_\Gamma$, respectively, thereby enabling ``neural boundary elements'' for computational electromagnetism. We indicate generalizations of our constructions to higher-order compatible spaces and other, non-compatible classes of discretizations in particular the Crouzeix-Raviart elements and Hybridized, Higher Order (HHO) methods.

We present a novel method for calculating Pad\'e approximants that is capable of eliminating spurious poles placed at the point of development and of identifying and eliminating spurious poles created by precision limitations and/or noisy coefficients. Information contained in in the eliminated poles is assimilated producing a reduced order Pad\'e approximant (PA). While the [m+k/m] conformation produced by the algorithm is flexible, the m value of the rational approximant produced by the algorithm reported here is determined by the number of spurious poles eliminated. Spurious poles due to coefficient noise/precision limitations are identified using an evidence-based filter parameter applied to the singular values of a matrix comprised of the series coefficients. The rational function poles are found directly by solving a generalized eigenvalue problem defined by a matrix pencil. Spurious poles place at the point of development, responsible in some algorithms for degeneracy, are identified by their magnitudes. Residues are found by solving an overdetermined linear matrix equation. The method is compared with the so-called Robust Pad\'e Approximation (RPA) method and shown to be competitive on the problems studied. By eliminating spurious poles, particularly in functions with branch points, such as those encountered solving the power-flow problem, solution of these complex-valued problems is made more reliable.

We study timed systems in which some timing features are unknown parameters. Parametric timed automata (PTAs) are a classical formalism for such systems but for which most interesting problems are undecidable. Notably, the parametric reachability emptiness problem, i.e., the emptiness of the parameter valuations set allowing to reach some given discrete state, is undecidable. Lower-bound/upper-bound parametric timed automata (L/U-PTAs) achieve decidability for reachability properties by enforcing a separation of parameters used as upper bounds in the automaton constraints, and those used as lower bounds. In this paper, we first study reachability. We exhibit a subclass of PTAs (namely integer-points PTAs) with bounded rational-valued parameters for which the parametric reachability emptiness problem is decidable. Using this class, we present further results improving the boundary between decidability and undecidability for PTAs and their subclasses such as L/U-PTAs. We then study liveness. We prove that: (1) the existence of at least one parameter valuation for which there exists an infinite run in an L/U-PTA is PSPACE-complete; (2) the existence of a parameter valuation such that the system has a deadlock is however undecidable; (3) the problem of the existence of a valuation for which a run remains in a given set of locations exhibits a very thin border between decidability and undecidability.

In this article we develop the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for elliptic partial differential equations with inhomogeneous Dirichlet, Neumann, and Robin boundary conditions, and the high contrast property emerges from the coefficients of elliptic operators and Robin boundary conditions. By careful construction of multiscale bases of the CEM-GMsFEM, we introduce two operators $\mathcal{D}^m$ and $\mathcal{N}^m$ which are used to handle inhomogeneous Dirichlet and Neumann boundary values and are also proved to converge independently of contrast ratios as enlarging oversampling regions. We provide a priori error estimate and show that oversampling layers are the key factor in controlling numerical errors. A series of experiments are conducted, and those results reflect the reliability of our methods even with high contrast ratios.

We develop an essentially optimal finite element approach for solving ergodic stochastic two-scale elliptic equations whose two-scale coefficient may depend also on the slow variable. We solve the limiting stochastic two-scale homogenized equation obtained from the stochastic two-scale convergence in the mean (A. Bourgeat, A. Mikelic and S. Wright, J. reine angew. Math, Vol. 456, 1994), whose solution comprises of the solution to the homogenized equation and the corrector, by truncating the infinite domain of the fast variable and using the sparse tensor product finite elements. We show that the convergence rate in terms of the truncation level is equivalent to that for solving the cell problems in the same truncated domain. Solving this equation, we obtain the solution to the homogenized equation and the corrector at the same time, using only a number of degrees of freedom that is essentially equivalent to that required for solving one cell problem. Optimal complexity is obtained when the corrector possesses sufficient regularity with respect to both the fast and the slow variables. Although the regularity norm of the corrector depends on the size of the truncated domain, we show that the convergence rate of the approximation for the solution to the homogenized equation is independent of the size of the truncated domain. With the availability of an analytic corrector, we construct a numerical corrector for the solution of the original stochastic two-scale equation from the finite element solution to the truncated stochastic two-scale homogenized equation. Numerical examples of quasi-periodic two-scale equations, and a stochastic two-scale equation of the checker board type, whose coefficient is discontinuous, confirm the theoretical results.

We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.

We investigate how the final parameters found by stochastic gradient descent are influenced by over-parameterization. We generate families of models by increasing the number of channels in a base network, and then perform a large hyper-parameter search to study how the test error depends on learning rate, batch size, and network width. We find that the optimal SGD hyper-parameters are determined by a "normalized noise scale," which is a function of the batch size, learning rate, and initialization conditions. In the absence of batch normalization, the optimal normalized noise scale is directly proportional to width. Wider networks, with their higher optimal noise scale, also achieve higher test accuracy. These observations hold for MLPs, ConvNets, and ResNets, and for two different parameterization schemes ("Standard" and "NTK"). We observe a similar trend with batch normalization for ResNets. Surprisingly, since the largest stable learning rate is bounded, the largest batch size consistent with the optimal normalized noise scale decreases as the width increases.

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

北京阿比特科技有限公司