亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The debiased estimator is a crucial tool in statistical inference for high-dimensional model parameters. However, constructing such an estimator involves estimating the high-dimensional inverse Hessian matrix, incurring significant computational costs. This challenge becomes particularly acute in distributed setups, where traditional methods necessitate computing a debiased estimator on every machine. This becomes unwieldy, especially with a large number of machines. In this paper, we delve into semi-supervised sparse statistical inference in a distributed setup. An efficient multi-round distributed debiased estimator, which integrates both labeled and unlabelled data, is developed. We will show that the additional unlabeled data helps to improve the statistical rate of each round of iteration. Our approach offers tailored debiasing methods for $M$-estimation and generalized linear models according to the specific form of the loss function. Our method also applies to a non-smooth loss like absolute deviation loss. Furthermore, our algorithm is computationally efficient since it requires only one estimation of a high-dimensional inverse covariance matrix. We demonstrate the effectiveness of our method by presenting simulation studies and real data applications that highlight the benefits of incorporating unlabeled data.

相關內容

Quantization is a fundamental optimization for many machine-learning use cases, including compressing gradients, model weights and activations, and datasets. The most accurate form of quantization is \emph{adaptive}, where the error is minimized with respect to a given input, rather than optimizing for the worst case. However, optimal adaptive quantization methods are considered infeasible in terms of both their runtime and memory requirements. We revisit the Adaptive Vector Quantization (AVQ) problem and present algorithms that find optimal solutions with asymptotically improved time and space complexity. We also present an even faster near-optimal algorithm for large inputs. Our experiments show our algorithms may open the door to using AVQ more extensively in a variety of machine learning applications.

In observational studies, identification of causal effects is threatened by the potential for unmeasured confounding. Negative controls have become widely used to evaluate the presence of potential unmeasured confounding thus enhancing credibility of reported causal effect estimates. Going beyond simply testing for residual confounding, proximal causal inference (PCI) was recently developed to debias causal effect estimates subject to confounding by hidden factors, by leveraging a pair of negative control variables, also known as treatment and outcome confounding proxies. While formal statistical inference has been developed for PCI, these methods can be challenging to implement in practice as they involve solving complex integral equations that are typically ill-posed. In this paper, we develop a regression-based PCI approach, employing a two-stage regression via familiar generalized linear models to implement the PCI framework, which completely obviates the need to solve difficult integral equations. In the first stage, one fits a generalized linear model (GLM) for the outcome confounding proxy in terms of the treatment confounding proxy and the primary treatment. In the second stage, one fits a GLM for the primary outcome in terms of the primary treatment, using the predicted value of the first-stage regression model as a regressor which as we establish accounts for any residual confounding for which the proxies are relevant. The proposed approach has merit in that (i) it is applicable to continuous, count, and binary outcomes cases, making it relevant to a wide range of real-world applications, and (ii) it is easy to implement using off-the-shelf software for GLMs. We establish the statistical properties of regression-based PCI and illustrate their performance in both synthetic and real-world empirical applications.

Multi-task learning (MTL) compresses the information from multiple tasks into a unified backbone to improve computational efficiency and generalization. Recent work directly merges multiple independently trained models to perform MTL instead of collecting their raw data for joint training, greatly expanding the application scenarios of MTL. However, by visualizing the representation distribution of existing model merging schemes, we find that the merged model often suffers from the dilemma of representation bias. That is, there is a significant discrepancy in the representation distribution between the merged and individual models, resulting in poor performance of merged MTL. In this paper, we propose a representation surgery solution called "Surgery" to reduce representation bias in the merged model. Specifically, Surgery is a lightweight task-specific module that takes the representation of the merged model as input and attempts to output the biases contained in the representation from the merged model. We then designed an unsupervised optimization objective that updates the Surgery module by minimizing the distance between the merged model's representation and the individual model's representation. Extensive experiments demonstrate significant MTL performance improvements when our Surgery module is applied to state-of-the-art (SOTA) model merging schemes.

Conformal prediction (CP) is a method for constructing a prediction interval around the output of a fitted model, whose validity does not rely on the model being correct--the CP interval offers a coverage guarantee that is distribution-free, but relies on the training data being drawn from the same distribution as the test data. A recent variant, weighted conformal prediction (WCP), reweights the method to allow for covariate shift between the training and test distributions. However, WCP requires knowledge of the nature of the covariate shift-specifically,the likelihood ratio between the test and training covariate distributions. In practice, since this likelihood ratio is estimated rather than known exactly, the coverage guarantee may degrade due to the estimation error. In this paper, we consider a special scenario where observations belong to a finite number of groups, and these groups determine the covariate shift between the training and test distributions-for instance, this may arise if the training set is collected via stratified sampling. Our results demonstrate that in this special case, the predictive coverage guarantees of WCP can be drastically improved beyond the bounds given by existing estimation error bounds.

In the current era of vast data and transparent machine learning, it is essential for techniques to operate at a large scale while providing a clear mathematical comprehension of the internal workings of the method. Although there already exist interpretable semi-parametric regression methods for large-scale applications that take into account non-linearity in the data, the complexity of the models is still often limited. One of the main challenges is the absence of interactions in these models, which are left out for the sake of better interpretability but also due to impractical computational costs. To overcome this limitation, we propose a new approach using a factorization method to derive a highly scalable higher-order tensor product spline model. Our method allows for the incorporation of all (higher-order) interactions of non-linear feature effects while having computational costs proportional to a model without interactions. We further develop a meaningful penalization scheme and examine the induced optimization problem. We conclude by evaluating the predictive and estimation performance of our method.

Predictive multiplicity refers to the phenomenon in which classification tasks may admit multiple competing models that achieve almost-equally-optimal performance, yet generate conflicting outputs for individual samples. This presents significant concerns, as it can potentially result in systemic exclusion, inexplicable discrimination, and unfairness in practical applications. Measuring and mitigating predictive multiplicity, however, is computationally challenging due to the need to explore all such almost-equally-optimal models, known as the Rashomon set, in potentially huge hypothesis spaces. To address this challenge, we propose a novel framework that utilizes dropout techniques for exploring models in the Rashomon set. We provide rigorous theoretical derivations to connect the dropout parameters to properties of the Rashomon set, and empirically evaluate our framework through extensive experimentation. Numerical results show that our technique consistently outperforms baselines in terms of the effectiveness of predictive multiplicity metric estimation, with runtime speedup up to $20\times \sim 5000\times$. With efficient Rashomon set exploration and metric estimation, mitigation of predictive multiplicity is then achieved through dropout ensemble and model selection.

This work considers the non-interactive source simulation problem (NISS). In the standard NISS scenario, a pair of distributed agents, Alice and Bob, observe a distributed binary memoryless source $(X^d,Y^d)$ generated based on joint distribution $P_{X,Y}$. The agents wish to produce a pair of discrete random variables $(U_d,V_d)$ with joint distribution $P_{U_d,V_d}$, such that $P_{U_d,V_d}$ converges in total variation distance to a target distribution $Q_{U,V}$. Two variations of the standard NISS scenario are considered. In the first variation, in addition to $(X^d,Y^d)$ the agents have access to a shared Bell state. The agents each measure their respective state, using a measurement of their choice, and use its classical output along with $(X^d,Y^d)$ to simulate the target distribution. This scenario is called the entanglement-assisted NISS (EA-NISS). In the second variation, the agents have access to a classical common random bit $Z$, in addition to $(X^d,Y^d)$. This scenario is called the classical common randomness NISS (CR-NISS). It is shown that for binary-output NISS scenarios, the set of feasible distributions for EA-NISS and CR-NISS are equal with each other. Hence, there is not quantum advantage in these EA-NISS scenarios. For non-binary output NISS scenarios, it is shown through an example that there are distributions that are feasible in EA-NISS but not in CR-NISS. This shows that there is a quantum advantage in non-binary output EA-NISS.

We study a new highly-practical problem setting that enables resource-constrained edge devices to adapt a pre-trained model to their local data distributions. Recognizing that device's data are likely to come from multiple latent domains that include a mixture of unlabelled domain-relevant and domain-irrelevant examples, we focus on the comparatively under-studied problem of latent domain adaptation. Considering limitations of edge devices, we aim to only use a pre-trained model and adapt it in a feed-forward way, without using back-propagation and without access to the source data. Modelling these realistic constraints bring us to the novel and practically important problem setting of feed-forward latent domain adaptation. Our solution is to meta-learn a network capable of embedding the mixed-relevance target dataset and dynamically adapting inference for target examples using cross-attention. The resulting framework leads to consistent improvements over strong ERM baselines. We also show that our framework sometimes even improves on the upper bound of domain-supervised adaptation, where only domain-relevant instances are provided for adaptation. This suggests that human annotated domain labels may not always be optimal, and raises the possibility of doing better through automated instance selection.

We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司