We show that computing the total variation distance between two product distributions is $\#\mathsf{P}$-complete. This is in stark contrast with other distance measures such as Kullback-Leibler, Chi-square, and Hellinger, which tensorize over the marginals leading to efficient algorithms.
$\text{TT}^{\Box}_{{\mathcal C}}$ is a generic family of effectful, extensional type theories with a forcing interpretation parameterized by modalities. This paper identifies a subclass of $\text{TT}^{\Box}_{{\mathcal C}}$ theories that internally realizes continuity principles through stateful computations, such as reference cells. The principle of continuity is a seminal property that holds for a number of intuitionistic theories such as System T. Roughly speaking, it states that functions on real numbers only need approximations of these numbers to compute. Generally, continuity principles have been justified using semantical arguments, but it is known that the modulus of continuity of functions can be computed using effectful computations such as exceptions or reference cells. In this paper, the modulus of continuity of the functionals on the Baire space is directly computed using the stateful computations enabled internally in the theory.
We give the first non-trivial decremental dynamic embedding of a weighted, undirected graph $G$ into $\ell_p$ space. Given a weighted graph $G$ undergoing a sequence of edge weight increases, the goal of this problem is to maintain a (randomized) mapping $\phi: (G,d) \to (X,\ell_p)$ from the set of vertices of the graph to the $\ell_p$ space such that for every pair of vertices $u$ and $v$, the expected distance between $\phi(u)$ and $\phi(v)$ in the $\ell_p$ metric is within a small multiplicative factor, referred to as the distortion, of their distance in $G$. Our main result is a dynamic algorithm with expected distortion $O(\log^2 n)$ and total update time $O\left((m^{1+o(1)} \log^2 W + Q)\log(nW) \right)$, where $W$ is the maximum weight of the edges, $Q$ is the total number of updates and $n, m$ denote the number of vertices and edges in $G$ respectively. This is the first result of its kind, extending the seminal result of Bourgain to the expanding field of dynamic algorithms. Moreover, we demonstrate that in the fully dynamic regime, where we tolerate edge insertions as well as deletions, no algorithm can explicitly maintain an embedding into $\ell_p$ space that has a low distortion with high probability.
Interpolatory necessary optimality conditions for $\mathcal{H}_2$-optimal reduced-order modeling of unstructured linear time-invariant (LTI) systems are well-known. Based on previous work on $\mathcal{L}_2$-optimal reduced-order modeling of stationary parametric problems, in this paper we develop and investigate optimality conditions for $\mathcal{H}_2$-optimal reduced-order modeling of structured LTI systems, in particular, for second-order, port-Hamiltonian, and time-delay systems. Under certain diagonalizability assumptions, we show that across all these different structured settings, bitangential Hermite interpolation is the common form for optimality, thus proving a unifying optimality framework for structured reduced-order modeling.
Identifying user's opinions and stances in long conversation threads on various topics can be extremely critical for enhanced personalization, market research, political campaigns, customer service, conflict resolution, targeted advertising, and content moderation. Hence, training language models to automate this task is critical. However, to train such models, gathering manual annotations has multiple challenges: 1) It is time-consuming and costly; 2) Conversation threads could be very long, increasing chances of noisy annotations; and 3) Interpreting instances where a user changes their opinion within a conversation is difficult because often such transitions are subtle and not expressed explicitly. Inspired by the recent success of large language models (LLMs) for complex natural language processing (NLP) tasks, we leverage Mistral Large and GPT-4 to automate the human annotation process on the following two tasks while also providing reasoning: i) User Stance classification, which involves labeling a user's stance of a post in a conversation on a five-point scale; ii) User Dogmatism classification, which deals with labeling a user's overall opinion in the conversation on a four-point scale. The majority voting on zero-shot, one-shot, and few-shot annotations from these two LLMs on 764 multi-user Reddit conversations helps us curate the USDC dataset. USDC is then used to finetune and instruction-tune multiple deployable small language models for the 5-class stance and 4-class dogmatism classification tasks. We make the code and dataset publicly available [//anonymous.4open.science/r/USDC-0F7F].
In this work we establish local limit theorems for q-multinomial and multiple Heine distributions. Specifically, the pointwise convergence of the q-multinomial distribution of the first kind, as well as for its discrete limit, the multiple Heine distribution, to a multivariate Stieltjes-Wigert type distribution, are provided.
The notion of $\alpha$-equivalence between $\lambda$-terms is commonly used to identify terms that are considered equal. However, due to the primitive treatment of free variables, this notion falls short when comparing subterms occurring within a larger context. Depending on the usage of the Barendregt convention (choosing different variable names for all involved binders), it will equate either too few or too many subterms. We introduce a formal notion of context-sensitive $\alpha$-equivalence, where two open terms can be compared within a context that resolves their free variables. We show that this equivalence coincides exactly with the notion of bisimulation equivalence. Furthermore, we present an efficient $O(n\log n)$ runtime hashing scheme that identifies $\lambda$-terms modulo context-sensitive $\alpha$-equivalence, generalizing over traditional bisimulation partitioning algorithms and improving upon a previously established $O(n\log^2 n)$ bound for a hashing modulo ordinary $\alpha$-equivalence by Maziarz et al. Hashing $\lambda$-terms is useful in many applications that require common subterm elimination and structure sharing. We have employed the algorithm to obtain a large-scale, densely packed, interconnected graph of mathematical knowledge from the Coq proof assistant for machine learning purposes.
A Straight-Line Program (SLP) $G$ for a string $T$ is a context-free grammar (CFG) that derives $T$ only, which can be considered as a compressed representation of $T$. In this paper, we show how to encode $G$ in $n \lceil \lg N \rceil + (n + n') \lceil \lg (n+\sigma) \rceil + 4n - 2n' + o(n)$ bits to support random access queries of extracting $T[p..q]$ in worst-case $O(\log N + p - q)$ time, where $N$ is the length of $T$, $\sigma$ is the alphabet size, $n$ is the number of variables in $G$ and $n' \le n$ is the number of symmetric centroid paths in the DAG representation for $G$.
Fairness in decision-making processes is often quantified using probabilistic metrics. However, these metrics may not fully capture the real-world consequences of unfairness. In this article, we adopt a utility-based approach to more accurately measure the real-world impacts of decision-making process. In particular, we show that if the concept of $\varepsilon$-fairness is employed, it can possibly lead to outcomes that are maximally unfair in the real-world context. Additionally, we address the common issue of unavailable data on false negatives by proposing a reduced setting that still captures essential fairness considerations. We illustrate our findings with two real-world examples: college admissions and credit risk assessment. Our analysis reveals that while traditional probability-based evaluations might suggest fairness, a utility-based approach uncovers the necessary actions to truly achieve equality. For instance, in the college admission case, we find that enhancing completion rates is crucial for ensuring fairness. Summarizing, this paper highlights the importance of considering the real-world context when evaluating fairness.
The Johnson-Lindenstrauss (JL) Lemma introduced the concept of dimension reduction via a random linear map, which has become a fundamental technique in many computational settings. For a set of $n$ points in $\mathbb{R}^d$ and any fixed $\epsilon>0$, it reduces the dimension $d$ to $O(\log n)$ while preserving, with high probability, all the pairwise Euclidean distances within factor $1+\epsilon$. Perhaps surprisingly, the target dimension can be lower if one only wishes to preserve the optimal value of a certain problem on the pointset, e.g., Euclidean max-cut or $k$-means. However, for some notorious problems, like diameter (aka furthest pair), dimension reduction via the JL map to below $O(\log n)$ does not preserve the optimal value within factor $1+\epsilon$. We propose to focus on another regime, of \emph{moderate dimension reduction}, where a problem's value is preserved within factor $\alpha>1$ using target dimension $\tfrac{\log n}{poly(\alpha)}$. We establish the viability of this approach and show that the famous $k$-center problem is $\alpha$-approximated when reducing to dimension $O(\tfrac{\log n}{\alpha^2}+\log k)$. Along the way, we address the diameter problem via the special case $k=1$. Our result extends to several important variants of $k$-center (with outliers, capacities, or fairness constraints), and the bound improves further with the input's doubling dimension. While our $poly(\alpha)$-factor improvement in the dimension may seem small, it actually has significant implications for streaming algorithms, and easily yields an algorithm for $k$-center in dynamic geometric streams, that achieves $O(\alpha)$-approximation using space $poly(kdn^{1/\alpha^2})$. This is the first algorithm to beat $O(n)$ space in high dimension $d$, as all previous algorithms require space at least $\exp(d)$. Furthermore, it extends to the $k$-center variants mentioned above.
We prove in this paper that there is a language $L_d$ accepted by some nondeterministic Turing machines but not by any ${\rm co}\mathcal{NP}$-machines (defined later). We further show that $L_d$ is in $\mathcal{NP}$, thus proving that $\mathcal{NP}\neq{\rm co}\mathcal{NP}$. The techniques used in this paper are lazy-diagonalization and the novel new technique developed in author's recent work \cite{Lin21}. As a by-product, we reach the important result \cite{Lin21} that $\mathcal{P}\neq\mathcal{NP}$ once again, which is clear from the above outcome and the well-known fact that $\mathcal{P}={\rm co}\mathcal{P}$. Other direct consequences are also summarized.