亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we establish novel deviation bounds for additive functionals of geometrically ergodic Markov chains similar to Rosenthal and Bernstein-type inequalities for sums of independent random variables. We pay special attention to the dependence of our bounds on the mixing time of the corresponding chain. Our proof technique is, as far as we know, new and based on the recurrent application of the Poisson decomposition. We relate the constants appearing in our moment bounds to the constants from the martingale version of the Rosenthal inequality and show an explicit dependence on the parameters of the underlying Markov kernel.

相關內容

Despite the popularity of feature importance (FI) measures in interpretable machine learning, the statistical adequacy of these methods is rarely discussed. From a statistical perspective, a major distinction is between analyzing a variable's importance before and after adjusting for covariates - i.e., between $\textit{marginal}$ and $\textit{conditional}$ measures. Our work draws attention to this rarely acknowledged, yet crucial distinction and showcases its implications. Further, we reveal that for testing conditional FI, only few methods are available and practitioners have hitherto been severely restricted in method application due to mismatching data requirements. Most real-world data exhibits complex feature dependencies and incorporates both continuous and categorical data (mixed data). Both properties are oftentimes neglected by conditional FI measures. To fill this gap, we propose to combine the conditional predictive impact (CPI) framework with sequential knockoff sampling. The CPI enables conditional FI measurement that controls for any feature dependencies by sampling valid knockoffs - hence, generating synthetic data with similar statistical properties - for the data to be analyzed. Sequential knockoffs were deliberately designed to handle mixed data and thus allow us to extend the CPI approach to such datasets. We demonstrate through numerous simulations and a real-world example that our proposed workflow controls type I error, achieves high power and is in line with results given by other conditional FI measures, whereas marginal FI metrics result in misleading interpretations. Our findings highlight the necessity of developing statistically adequate, specialized methods for mixed data.

Optimal treatment regime is the individualized treatment decision rule which yields the optimal treatment outcomes in expectation. A simple case of treatment decision rule is the linear decision rule, which is characterized by its coefficients and its threshold. As patients heterogeneity data accumulates, it is of interest to estimate the optimal treatment regime with a linear decision rule in high-dimensional settings. Single timepoint optimal treatment regime can be estimated using Concordance-assisted learning (CAL), which is based on pairwise comparison. CAL is flexible and achieves good results in low dimensions. However, with an indicator function inside it, CAL is difficult to optimize in high dimensions. Recently, researchers proposed a smoothing approach using a family of cumulative distribution functions to replace indicator functions. In this paper, we introduce smoothed concordance-assisted learning (SMCAL), which applies the smoothing method to CAL using a family of sigmoid functions. We then prove the convergence rates of the estimated coefficients by analyzing the approximation and stochastic errors for the cases when the covariates are continuous. We also consider discrete covariates cases, and establish similar results. Simulation studies are conducted, demonstrating the advantage of our method.

We extend Robins' theory of causal inference for complex longitudinal data to the case of continuously varying as opposed to discrete covariates and treatments. In particular we establish versions of the key results of the discrete theory: the g-computation formula and a collection of powerful characterizations of the g-null hypothesis of no treatment effect. This is accomplished under natural continuity hypotheses concerning the conditional distributions of the outcome variable and of the covariates given the past. We also show that our assumptions concerning counterfactual variables place no restriction on the joint distribution of the observed variables: thus in a precise sense, these assumptions are "for free," or if you prefer, harmless.

Motivated by a recent literature on the double-descent phenomenon in machine learning, we consider highly over-parametrized models in causal inference, including synthetic control with many control units. In such models, there may be so many free parameters that the model fits the training data perfectly. As a motivating example, we first investigate high-dimensional linear regression for imputing wage data, where we find that models with many more covariates than sample size can outperform simple ones. As our main contribution, we document the performance of high-dimensional synthetic control estimators with many control units. We find that adding control units can help improve imputation performance even beyond the point where the pre-treatment fit is perfect. We then provide a unified theoretical perspective on the performance of these high-dimensional models. Specifically, we show that more complex models can be interpreted as model-averaging estimators over simpler ones, which we link to an improvement in average performance. This perspective yields concrete insights into the use of synthetic control when control units are many relative to the number of pre-treatment periods.

This paper presents a concise mathematical framework for investigating both feed-forward and backward process, during the training to learn model weights, of an artificial neural network (ANN). Inspired from the idea of the two-step rule for backpropagation, we define a notion of F-adjoint which is aimed at a better description of the backpropagation algorithm. In particular, by introducing the notions of F-propagation and F-adjoint through a deep neural network architecture, the backpropagation associated to a cost/loss function is proven to be completely characterized by the F-adjoint of the corresponding F-propagation relatively to the partial derivative, with respect to the inputs, of the cost function.

Grammatical Error Correction (GEC) is the task of automatically detecting and correcting errors in text. The task not only includes the correction of grammatical errors, such as missing prepositions and mismatched subject-verb agreement, but also orthographic and semantic errors, such as misspellings and word choice errors respectively. The field has seen significant progress in the last decade, motivated in part by a series of five shared tasks, which drove the development of rule-based methods, statistical classifiers, statistical machine translation, and finally neural machine translation systems which represent the current dominant state of the art. In this survey paper, we condense the field into a single article and first outline some of the linguistic challenges of the task, introduce the most popular datasets that are available to researchers (for both English and other languages), and summarise the various methods and techniques that have been developed with a particular focus on artificial error generation. We next describe the many different approaches to evaluation as well as concerns surrounding metric reliability, especially in relation to subjective human judgements, before concluding with an overview of recent progress and suggestions for future work and remaining challenges. We hope that this survey will serve as comprehensive resource for researchers who are new to the field or who want to be kept apprised of recent developments.

We study three models of the problem of adversarial training in multiclass classification designed to construct robust classifiers against adversarial perturbations of data in the agnostic-classifier setting. We prove the existence of Borel measurable robust classifiers in each model and provide a unified perspective of the adversarial training problem, expanding the connections with optimal transport initiated by the authors in previous work and developing new connections between adversarial training in the multiclass setting and total variation regularization. As a corollary of our results, we prove the existence of Borel measurable solutions to the agnostic adversarial training problem in the binary classification setting, a result that improves results in the literature of adversarial training, where robust classifiers were only known to exist within the enlarged universal $\sigma$-algebra of the feature space.

In high performance systems it is sometimes hard to build very large graphs that are efficient both with respect to memory and compute. This paper proposes a data structure called Markov-chain-priority-queue (MCPrioQ), which is a lock-free sparse markov-chain that enables online and continuous learning with time-complexity of $O(1)$ for updates and $O(CDF^{-1}(t))$ inference. MCPrioQ is especially suitable for recommender-systems for lookups of $n$-items in descending probability order. The concurrent updates are achieved using hash-tables and atomic instructions and the lookups are achieved through a novel priority-queue which allows for approximately correct results even during concurrent updates. The approximatly correct and lock-free property is maintained by a read-copy-update scheme, but where the semantics have been slightly updated to allow for swap of elements rather than the traditional pop-insert scheme.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

北京阿比特科技有限公司