亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the fundamental task of optimising a real-valued function defined in a potentially high-dimensional Euclidean space, such as the loss function in many machine-learning tasks or the logarithm of the probability distribution in statistical inference. We use Riemannian geometry notions to redefine the optimisation problem of a function on the Euclidean space to a Riemannian manifold with a warped metric, and then find the function's optimum along this manifold. The warped metric chosen for the search domain induces a computational friendly metric-tensor for which optimal search directions associated with geodesic curves on the manifold becomes easier to compute. Performing optimization along geodesics is known to be generally infeasible, yet we show that in this specific manifold we can analytically derive Taylor approximations up to third-order. In general these approximations to the geodesic curve will not lie on the manifold, however we construct suitable retraction maps to pull them back onto the manifold. Therefore, we can efficiently optimize along the approximate geodesic curves. We cover the related theory, describe a practical optimization algorithm and empirically evaluate it on a collection of challenging optimisation benchmarks. Our proposed algorithm, using 3rd-order approximation of geodesics, tends to outperform standard Euclidean gradient-based counterparts in term of number of iterations until convergence.

相關內容

When applying the classical multistep schemes for solving differential equations, one often faces the dilemma that smaller time steps are needed with higher-order schemes, making it impractical to use high-order schemes for stiff problems. We construct in this paper a new class of BDF and implicit-explicit (IMEX) schemes for parabolic type equations based on the Taylor expansions at time $t^{n+\beta}$ with $\beta > 1$ being a tunable parameter. These new schemes, with a suitable $\beta$, allow larger time steps at higher-order for stiff problems than that is allowed with a usual higher-order scheme. For parabolic type equations, we identify an explicit uniform multiplier for the new second- to fourth-order schemes, and conduct rigorously stability and error analysis by using the energy argument. We also present ample numerical examples to validate our findings.

We develop an inferential toolkit for analyzing object-valued responses, which correspond to data situated in general metric spaces, paired with Euclidean predictors within the conformal framework. To this end we introduce conditional profile average transport costs, where we compare distance profiles that correspond to one-dimensional distributions of probability mass falling into balls of increasing radius through the optimal transport cost when moving from one distance profile to another. The average transport cost to transport a given distance profile to all others is crucial for statistical inference in metric spaces and underpins the proposed conditional profile scores. A key feature of the proposed approach is to utilize the distribution of conditional profile average transport costs as conformity score for general metric space-valued responses, which facilitates the construction of prediction sets by the split conformal algorithm. We derive the uniform convergence rate of the proposed conformity score estimators and establish asymptotic conditional validity for the prediction sets. The finite sample performance for synthetic data in various metric spaces demonstrates that the proposed conditional profile score outperforms existing methods in terms of both coverage level and size of the resulting prediction sets, even in the special case of scalar and thus Euclidean responses. We also demonstrate the practical utility of conditional profile scores for network data from New York taxi trips and for compositional data reflecting energy sourcing of U.S. states.

The aim of this article is to derive discontinuous finite elements vector spaces which can be put in a discrete de-Rham complex for which an harmonic gap property may be proven. First, discontinuous finite element spaces inspired by classical N{\'e}d{\'e}lec or Raviart-Thomas conforming space are considered, and we prove that by relaxing the normal or tangential constraint, discontinuous spaces ensuring the harmonic gap property can be built. Then the triangular case is addressed, for which we prove that such a property holds for the classical discontinuous finite element space for vectors. On Cartesian meshes, this result does not hold for the classical discontinuous finite element space for vectors. We then show how to use the de-Rham complex found for triangular meshes for enriching the finite element space on Cartesian meshes in order to recover a de-Rham complex, on which the same harmonic gap property is proven.

Unveiling the underlying governing equations of nonlinear dynamic systems remains a significant challenge. Insufficient prior knowledge hinders the determination of an accurate candidate library, while noisy observations lead to imprecise evaluations, which in turn result in redundant function terms or erroneous equations. This study proposes a framework to robustly uncover open-form partial differential equations (PDEs) from limited and noisy data. The framework operates through two alternating update processes: discovering and embedding. The discovering phase employs symbolic representation and a novel reinforcement learning (RL)-guided hybrid PDE generator to efficiently produce diverse open-form PDEs with tree structures. A neural network-based predictive model fits the system response and serves as the reward evaluator for the generated PDEs. PDEs with higher rewards are utilized to iteratively optimize the generator via the RL strategy and the best-performing PDE is selected by a parameter-free stability metric. The embedding phase integrates the initially identified PDE from the discovering process as a physical constraint into the predictive model for robust training. The traversal of PDE trees automates the construction of the computational graph and the embedding process without human intervention. Numerical experiments demonstrate our framework's capability to uncover governing equations from nonlinear dynamic systems with limited and highly noisy data and outperform other physics-informed neural network-based discovery methods. This work opens new potential for exploring real-world systems with limited understanding.

Domain decomposition provides an effective way to tackle the dilemma of physics-informed neural networks (PINN) which struggle to accurately and efficiently solve partial differential equations (PDEs) in the whole domain, but the lack of efficient tools for dealing with the interfaces between two adjacent sub-domains heavily hinders the training effects, even leads to the discontinuity of the learned solutions. In this paper, we propose a symmetry group based domain decomposition strategy to enhance the PINN for solving the forward and inverse problems of the PDEs possessing a Lie symmetry group. Specifically, for the forward problem, we first deploy the symmetry group to generate the dividing-lines having known solution information which can be adjusted flexibly and are used to divide the whole training domain into a finite number of non-overlapping sub-domains, then utilize the PINN and the symmetry-enhanced PINN methods to learn the solutions in each sub-domain and finally stitch them to the overall solution of PDEs. For the inverse problem, we first utilize the symmetry group acting on the data of the initial and boundary conditions to generate labeled data in the interior domain of PDEs and then find the undetermined parameters as well as the solution by only training the neural networks in a sub-domain. Consequently, the proposed method can predict high-accuracy solutions of PDEs which are failed by the vanilla PINN in the whole domain and the extended physics-informed neural network in the same sub-domains. Numerical results of the Korteweg-de Vries equation with a translation symmetry and the nonlinear viscous fluid equation with a scaling symmetry show that the accuracies of the learned solutions are improved largely.

We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme and obtain a global reliability bound.

We introduce a nonconforming hybrid finite element method for the two-dimensional vector Laplacian, based on a primal variational principle for which conforming methods are known to be inconsistent. Consistency is ensured using penalty terms similar to those used to stabilize hybridizable discontinuous Galerkin (HDG) methods, with a carefully chosen penalty parameter due to Brenner, Li, and Sung [Math. Comp., 76 (2007), pp. 573-595]. Our method accommodates elements of arbitrarily high order and, like HDG methods, it may be implemented efficiently using static condensation. The lowest-order case recovers the $P_1$-nonconforming method of Brenner, Cui, Li, and Sung [Numer. Math., 109 (2008), pp. 509-533], and we show that higher-order convergence is achieved under appropriate regularity assumptions. The analysis makes novel use of a family of weighted Sobolev spaces, due to Kondrat'ev, for domains admitting corner singularities.

The main challenge of large-scale numerical simulation of radiation transport is the high memory and computation time requirements of discretization methods for kinetic equations. In this work, we derive and investigate a neural network-based approximation to the entropy closure method to accurately compute the solution of the multi-dimensional moment system with a low memory footprint and competitive computational time. We extend methods developed for the standard entropy-based closure to the context of regularized entropy-based closures. The main idea is to interpret structure-preserving neural network approximations of the regularized entropy closure as a two-stage approximation to the original entropy closure. We conduct a numerical analysis of this approximation and investigate optimal parameter choices. Our numerical experiments demonstrate that the method has a much lower memory footprint than traditional methods with competitive computation times and simulation accuracy. The code and all trained networks are provided on GitHub //github.com/ScSteffen/neuralEntropyClosures and //github.com/CSMMLab/KiT-RT.

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.

北京阿比特科技有限公司