Multi-objective Markov decision processes are a special kind of multi-objective optimization problem that involves sequential decision making while satisfying the Markov property of stochastic processes. Multi-objective reinforcement learning methods address this problem by fusing the reinforcement learning paradigm with multi-objective optimization techniques. One major drawback of these methods is the lack of adaptability to non-stationary dynamics in the environment. This is because they adopt optimization procedures that assume stationarity to evolve a coverage set of policies that can solve the problem. This paper introduces a developmental optimization approach that can evolve the policy coverage set while exploring the preference space over the defined objectives in an online manner. We propose a novel multi-objective reinforcement learning algorithm that can robustly evolve a convex coverage set of policies in an online manner in non-stationary environments. We compare the proposed algorithm with two state-of-the-art multi-objective reinforcement learning algorithms in stationary and non-stationary environments. Results showed that the proposed algorithm significantly outperforms the existing algorithms in non-stationary environments while achieving comparable results in stationary environments.
Decentralization initiatives like Solid enable data owners to control who has access to their data and to stimulate innovation by creating both application and data markets. Once data owners share their data with others, though, it is no longer possible for them to control how their data are used. To address this issue, we propose a usage control architecture to monitor compliance with usage control policies. To this end, our solution relies on blockchain and trusted execution environments. We demonstrate the potential of the architecture by describing the various workflows needed to realize a motivating use case scenario for data markets. Additionally, we discuss the merits of the approach from privacy, security, integrateability, and affordability perspectives.
The attention mechanism requires huge computational efforts to process unnecessary calculations, significantly limiting the system's performance. Researchers propose sparse attention to convert some DDMM operations to SDDMM and SpMM operations. However, current sparse attention solutions introduce massive off-chip random memory access. We propose CPSAA, a novel crossbar-based PIM-featured sparse attention accelerator. First, we present a novel attention calculation mode. Second, we design a novel PIM-based sparsity pruning architecture. Finally, we present novel crossbar-based methods. Experimental results show that CPSAA has an average of 89.6X, 32.2X, 17.8X, 3.39X, and 3.84X performance improvement and 755.6X, 55.3X, 21.3X, 5.7X, and 4.9X energy-saving when compare with GPU, FPGA, SANGER, ReBERT, and ReTransformer.
Multi-sensor modal fusion has demonstrated strong advantages in 3D object detection tasks. However, existing methods that fuse multi-modal features require transforming features into the bird's eye view space and may lose certain information on Z-axis, thus leading to inferior performance. To this end, we propose a novel end-to-end multi-modal fusion transformer-based framework, dubbed FusionFormer, that incorporates deformable attention and residual structures within the fusion encoding module. Specifically, by developing a uniform sampling strategy, our method can easily sample from 2D image and 3D voxel features spontaneously, thus exploiting flexible adaptability and avoiding explicit transformation to the bird's eye view space during the feature concatenation process. We further implement a residual structure in our feature encoder to ensure the model's robustness in case of missing an input modality. Through extensive experiments on a popular autonomous driving benchmark dataset, nuScenes, our method achieves state-of-the-art single model performance of 72.6% mAP and 75.1% NDS in the 3D object detection task without test time augmentation.
Growing attention has been paid to Reinforcement Learning (RL) algorithms when optimizing long-term user engagement in sequential recommendation tasks. One challenge in large-scale online recommendation systems is the constant and complicated changes in users' behavior patterns, such as interaction rates and retention tendencies. When formulated as a Markov Decision Process (MDP), the dynamics and reward functions of the recommendation system are continuously affected by these changes. Existing RL algorithms for recommendation systems will suffer from distribution shift and struggle to adapt in such an MDP. In this paper, we introduce a novel paradigm called Adaptive Sequential Recommendation (AdaRec) to address this issue. AdaRec proposes a new distance-based representation loss to extract latent information from users' interaction trajectories. Such information reflects how RL policy fits to current user behavior patterns, and helps the policy to identify subtle changes in the recommendation system. To make rapid adaptation to these changes, AdaRec encourages exploration with the idea of optimism under uncertainty. The exploration is further guarded by zero-order action optimization to ensure stable recommendation quality in complicated environments. We conduct extensive empirical analyses in both simulator-based and live sequential recommendation tasks, where AdaRec exhibits superior long-term performance compared to all baseline algorithms.
Vision-based perception modules are increasingly deployed in many applications, especially autonomous vehicles and intelligent robots. These modules are being used to acquire information about the surroundings and identify obstacles. Hence, accurate detection and classification are essential to reach appropriate decisions and take appropriate and safe actions at all times. Current studies have demonstrated that "printed adversarial attacks", known as physical adversarial attacks, can successfully mislead perception models such as object detectors and image classifiers. However, most of these physical attacks are based on noticeable and eye-catching patterns for generated perturbations making them identifiable/detectable by human eye or in test drives. In this paper, we propose a camera-based inconspicuous adversarial attack (\textbf{AdvRain}) capable of fooling camera-based perception systems over all objects of the same class. Unlike mask based fake-weather attacks that require access to the underlying computing hardware or image memory, our attack is based on emulating the effects of a natural weather condition (i.e., Raindrops) that can be printed on a translucent sticker, which is externally placed over the lens of a camera. To accomplish this, we provide an iterative process based on performing a random search aiming to identify critical positions to make sure that the performed transformation is adversarial for a target classifier. Our transformation is based on blurring predefined parts of the captured image corresponding to the areas covered by the raindrop. We achieve a drop in average model accuracy of more than $45\%$ and $40\%$ on VGG19 for ImageNet and Resnet34 for Caltech-101, respectively, using only $20$ raindrops.
Deep implicit functions (DIFs) have emerged as a powerful paradigm for many computer vision tasks such as 3D shape reconstruction, generation, registration, completion, editing, and understanding. However, given a set of 3D shapes with associated covariates there is at present no shape representation method which allows to precisely represent the shapes while capturing the individual dependencies on each covariate. Such a method would be of high utility to researchers to discover knowledge hidden in a population of shapes. For scientific shape discovery, we propose a 3D Neural Additive Model for Interpretable Shape Representation ($\texttt{NAISR}$) which describes individual shapes by deforming a shape atlas in accordance to the effect of disentangled covariates. Our approach captures shape population trends and allows for patient-specific predictions through shape transfer. $\texttt{NAISR}$ is the first approach to combine the benefits of deep implicit shape representations with an atlas deforming according to specified covariates. We evaluate $\texttt{NAISR}$ with respect to shape reconstruction, shape disentanglement, shape evolution, and shape transfer on three datasets: 1) $\textit{Starman}$, a simulated 2D shape dataset; 2) the ADNI hippocampus 3D shape dataset; and 3) a pediatric airway 3D shape dataset. Our experiments demonstrate that $\textit{Starman}$ achieves excellent shape reconstruction performance while retaining interpretability. Our code is available at $\href{//github.com/uncbiag/NAISR}{//github.com/uncbiag/NAISR}$.
State-of-the-art (SOTA) object detection methods have succeeded in several applications at the price of relying on heavyweight neural networks, which makes them inefficient and inviable for many applications with computational resource constraints. This work presents a method to build a Convolutional Neural Network (CNN) layer by layer for object detection from user-drawn markers on discriminative regions of representative images. We address the detection of Schistosomiasis mansoni eggs in microscopy images of fecal samples, and the detection of ships in satellite images as application examples. We could create a flyweight CNN without backpropagation from very few input images. Our method explores a recent methodology, Feature Learning from Image Markers (FLIM), to build convolutional feature extractors (encoders) from marker pixels. We extend FLIM to include a single-layer adaptive decoder, whose weights vary with the input image -- a concept never explored in CNNs. Our CNN weighs thousands of times less than SOTA object detectors, being suitable for CPU execution and showing superior or equivalent performance to three methods in five measures.
Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models. Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering. However, clustering errors are inevitable. To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID. Specifically, before clustering, the relation between unlabeled images is explored based on a graph correlation learning (GCL) module and the refined features are then used for clustering to generate high-quality pseudo-labels.Thus, GCL adaptively mines the relationship between samples in a mini-batch to reduce the impact of abnormal clustering when training. To train the network more effectively, we further propose a selective contrastive learning (SCL) method with a selective memory bank update policy. Extensive experiments demonstrate that our method shows much better results than most state-of-the-art unsupervised methods on Market1501, DukeMTMC-reID and MSMT17 datasets. We will release the code for model reproduction.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.