The global trends of urbanization and increased personal mobility force us to rethink the way we live and use urban space. The Traffic4cast competition series tackles this problem in a data-driven way, advancing the latest methods in machine learning for modeling complex spatial systems over time. In this edition, our dynamic road graph data combine information from road maps, $10^{12}$ probe data points, and stationary vehicle detectors in three cities over the span of two years. While stationary vehicle detectors are the most accurate way to capture traffic volume, they are only available in few locations. Traffic4cast 2022 explores models that have the ability to generalize loosely related temporal vertex data on just a few nodes to predict dynamic future traffic states on the edges of the entire road graph. In the core challenge, participants are invited to predict the likelihoods of three congestion classes derived from the speed levels in the GPS data for the entire road graph in three cities 15 min into the future. We only provide vehicle count data from spatially sparse stationary vehicle detectors in these three cities as model input for this task. The data are aggregated in 15 min time bins for one hour prior to the prediction time. For the extended challenge, participants are tasked to predict the average travel times on super-segments 15 min into the future - super-segments are longer sequences of road segments in the graph. The competition results provide an important advance in the prediction of complex city-wide traffic states just from publicly available sparse vehicle data and without the need for large amounts of real-time floating vehicle data.
Typical deep visual recognition models are capable of performing the one task they were trained on. In this paper, we tackle the extremely difficult problem of combining completely distinct models with different initializations, each solving a separate task, into one multi-task model without any additional training. Prior work in model merging permutes one model to the space of the other then adds them together. While this works for models trained on the same task, we find that this fails to account for the differences in models trained on disjoint tasks. Thus, we introduce "ZipIt!", a general method for merging two arbitrary models of the same architecture that incorporates two simple strategies. First, in order to account for features that aren't shared between models, we expand the model merging problem to additionally allow for merging features within each model by defining a general "zip" operation. Second, we add support for partially zipping the models up until a specified layer, naturally creating a multi-head model. We find that these two changes combined account for a staggering 20-60% improvement over prior work, making the merging of models trained on disjoint tasks feasible.
Rotated bounding boxes drastically reduce output ambiguity of elongated objects, making it superior to axis-aligned bounding boxes. Despite the effectiveness, rotated detectors are not widely employed. Annotating rotated bounding boxes is such a laborious process that they are not provided in many detection datasets where axis-aligned annotations are used instead. In this paper, we propose a framework that allows the model to predict precise rotated boxes only requiring cheaper axis-aligned annotation of the target dataset 1. To achieve this, we leverage the fact that neural networks are capable of learning richer representation of the target domain than what is utilized by the task. The under-utilized representation can be exploited to address a more detailed task. Our framework combines task knowledge of an out-of-domain source dataset with stronger annotation and domain knowledge of the target dataset with weaker annotation. A novel assignment process and projection loss are used to enable the co-training on the source and target datasets. As a result, the model is able to solve the more detailed task in the target domain, without additional computation overhead during inference. We extensively evaluate the method on various target datasets including fresh-produce dataset, HRSC2016 and SSDD. Results show that the proposed method consistently performs on par with the fully supervised approach.
The analysis of large-scale time-series network data, such as social media and email communications, remains a significant challenge for graph analysis methodology. In particular, the scalability of graph analysis is a critical issue hindering further progress in large-scale downstream inference. In this paper, we introduce a novel approach called "temporal encoder embedding" that can efficiently embed large amounts of graph data with linear complexity. We apply this method to an anonymized time-series communication network from a large organization spanning 2019-2020, consisting of over 100 thousand vertices and 80 million edges. Our method embeds the data within 10 seconds on a standard computer and enables the detection of communication pattern shifts for individual vertices, vertex communities, and the overall graph structure. Through supporting theory and synthesis studies, we demonstrate the theoretical soundness of our approach under random graph models and its numerical effectiveness through simulation studies.
With the wide application of Large Language Models (LLMs) such as ChatGPT, how to make the contents generated by LLM accurate and credible becomes very important, especially in complex knowledge-intensive tasks. In this paper, we propose a novel framework called Search-in-the-Chain (SearChain) to improve the accuracy, credibility and traceability of LLM-generated content for multi-hop question answering, which is a typical complex knowledge-intensive task. SearChain is a framework that deeply integrates LLM and information retrieval (IR). In SearChain, LLM constructs a chain-of-query, which is the decomposition of the multi-hop question. Each node of the chain is a query-answer pair consisting of an IR-oriented query and the answer generated by LLM for this query. IR verifies, completes, and traces the information of each node of the chain, so as to guide LLM to construct the correct chain-of-query, and finally answer the multi-hop question. SearChain makes LLM change from trying to give a answer to trying to construct the chain-of-query when faced with the multi-hop question, which can stimulate the knowledge-reasoning ability and provides the interface for IR to be deeply involved in reasoning process of LLM. IR interacts with each node of chain-of-query of LLM. It verifies the information of the node and provides the unknown knowledge to LLM, which ensures the accuracy of the whole chain in the process of LLM generating the answer. Besides, the contents returned by LLM to the user include not only the final answer but also the reasoning process for the question, that is, the chain-of-query and the supporting documents retrieved by IR for each node of the chain, which improves the credibility and traceability of the contents generated by LLM. Experimental results show SearChain outperforms related baselines on four multi-hop question-answering datasets.
Temporal link prediction, aiming to predict future edges between paired nodes in a dynamic graph, is of vital importance in diverse applications. However, existing methods are mainly built upon uniform Euclidean space, which has been found to be conflict with the power-law distributions of real-world graphs and unable to represent the hierarchical connections between nodes effectively. With respect to the special data characteristic, hyperbolic geometry offers an ideal alternative due to its exponential expansion property. In this paper, we propose HGWaveNet, a novel hyperbolic graph neural network that fully exploits the fitness between hyperbolic spaces and data distributions for temporal link prediction. Specifically, we design two key modules to learn the spatial topological structures and temporal evolutionary information separately. On the one hand, a hyperbolic diffusion graph convolution (HDGC) module effectively aggregates information from a wider range of neighbors. On the other hand, the internal order of causal correlation between historical states is captured by hyperbolic dilated causal convolution (HDCC) modules. The whole model is built upon the hyperbolic spaces to preserve the hierarchical structural information in the entire data flow. To prove the superiority of HGWaveNet, extensive experiments are conducted on six real-world graph datasets and the results show a relative improvement by up to 6.67% on AUC for temporal link prediction over SOTA methods.
Remote sensing has significantly advanced water detection by applying semantic segmentation techniques to satellite imagery. However, semantic segmentation remains challenging due to the substantial amount of annotated data required. This is particularly problematic in wetland detection, where water extent varies over time and space, necessitating multiple annotations for the same area. In this paper, we present DeepAqua, a self-supervised deep learning model that leverages knowledge distillation to eliminate the need for manual annotations during the training phase. DeepAqua utilizes the Normalized Difference Water Index (NDWI) as a teacher model to train a Convolutional Neural Network (CNN) for segmenting water from Synthetic Aperture Radar (SAR) images. To train the student model, we exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces. Our model represents a significant advancement in computer vision techniques by effectively training semantic segmentation models without any manually annotated data. This approach offers a practical solution for monitoring wetland water extent changes without needing ground truth data, making it highly adaptable and scalable for wetland conservation efforts.
In the last decade or so, we have witnessed deep learning reinvigorating the machine learning field. It has solved many problems in the domains of computer vision, speech recognition, natural language processing, and various other tasks with state-of-the-art performance. The data is generally represented in the Euclidean space in these domains. Various other domains conform to non-Euclidean space, for which graph is an ideal representation. Graphs are suitable for representing the dependencies and interrelationships between various entities. Traditionally, handcrafted features for graphs are incapable of providing the necessary inference for various tasks from this complex data representation. Recently, there is an emergence of employing various advances in deep learning to graph data-based tasks. This article provides a comprehensive survey of graph neural networks (GNNs) in each learning setting: supervised, unsupervised, semi-supervised, and self-supervised learning. Taxonomy of each graph based learning setting is provided with logical divisions of methods falling in the given learning setting. The approaches for each learning task are analyzed from both theoretical as well as empirical standpoints. Further, we provide general architecture guidelines for building GNNs. Various applications and benchmark datasets are also provided, along with open challenges still plaguing the general applicability of GNNs.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.
Learning node embeddings that capture a node's position within the broader graph structure is crucial for many prediction tasks on graphs. However, existing Graph Neural Network (GNN) architectures have limited power in capturing the position/location of a given node with respect to all other nodes of the graph. Here we propose Position-aware Graph Neural Networks (P-GNNs), a new class of GNNs for computing position-aware node embeddings. P-GNN first samples sets of anchor nodes, computes the distance of a given target node to each anchor-set,and then learns a non-linear distance-weighted aggregation scheme over the anchor-sets. This way P-GNNs can capture positions/locations of nodes with respect to the anchor nodes. P-GNNs have several advantages: they are inductive, scalable,and can incorporate node feature information. We apply P-GNNs to multiple prediction tasks including link prediction and community detection. We show that P-GNNs consistently outperform state of the art GNNs, with up to 66% improvement in terms of the ROC AUC score.
Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.