亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Adversarial Markov Decision Process (AMDP) is a learning framework that deals with unknown and varying tasks in decision-making applications like robotics and recommendation systems. A major limitation of the AMDP formalism, however, is pessimistic regret analysis results in the sense that although the cost function can change from one episode to the next, the evolution in many settings is not adversarial. To address this, we introduce and study a new variant of AMDP, which aims to minimize regret while utilizing a set of cost predictors. For this setting, we develop a new policy search method that achieves a sublinear optimistic regret with high probability, that is a regret bound which gracefully degrades with the estimation power of the cost predictors. Establishing such optimistic regret bounds is nontrivial given that (i) as we demonstrate, the existing importance-weighted cost estimators cannot establish optimistic bounds, and (ii) the feedback model of AMDP is different (and more realistic) than the existing optimistic online learning works. Our result, in particular, hinges upon developing a novel optimistically biased cost estimator that leverages cost predictors and enables a high-probability regret analysis without imposing restrictive assumptions. We further discuss practical extensions of the proposed scheme and demonstrate its efficacy numerically.

相關內容

While quantum reinforcement learning (RL) has attracted a surge of attention recently, its theoretical understanding is limited. In particular, it remains elusive how to design provably efficient quantum RL algorithms that can address the exploration-exploitation trade-off. To this end, we propose a novel UCRL-style algorithm that takes advantage of quantum computing for tabular Markov decision processes (MDPs) with $S$ states, $A$ actions, and horizon $H$, and establish an $\mathcal{O}(\mathrm{poly}(S, A, H, \log T))$ worst-case regret for it, where $T$ is the number of episodes. Furthermore, we extend our results to quantum RL with linear function approximation, which is capable of handling problems with large state spaces. Specifically, we develop a quantum algorithm based on value target regression (VTR) for linear mixture MDPs with $d$-dimensional linear representation and prove that it enjoys $\mathcal{O}(\mathrm{poly}(d, H, \log T))$ regret. Our algorithms are variants of UCRL/UCRL-VTR algorithms in classical RL, which also leverage a novel combination of lazy updating mechanisms and quantum estimation subroutines. This is the key to breaking the $\Omega(\sqrt{T})$-regret barrier in classical RL. To the best of our knowledge, this is the first work studying the online exploration in quantum RL with provable logarithmic worst-case regret.

Domain generalization (DG) is about training models that generalize well under domain shift. Previous research on DG has been conducted mostly in single-source or multi-source settings. In this paper, we consider a third, lesser-known setting where a training domain is endowed with a collection of pairs of examples that share the same semantic information. Such semantic sharing (SS) pairs can be created via data augmentation and then utilized for consistency regularization (CR). We present a theory showing CR is conducive to DG and propose a novel CR method called Logit Attribution Matching (LAM). We conduct experiments on five DG benchmarks and four pretrained models with SS pairs created by both generic and targeted data augmentation methods. LAM outperforms representative single/multi-source DG methods and various CR methods that leverage SS pairs. The code and data of this project are available at //github.com/Gaohan123/LAM

Large Language Models (LLMs) are widely used in Software Engineering (SE) for various tasks, including generating code, designing and documenting software, adding code comments, reviewing code, and writing test scripts. However, creating test scripts or automating test cases demands test suite documentation that comprehensively covers functional requirements. Such documentation must enable thorough testing within a constrained scope and timeframe, particularly as requirements and user demands evolve. This article centers on generating user requirements as epics and high-level user stories and crafting test case scenarios based on these stories. It introduces a web-based software tool that employs an LLM-based agent and prompt engineering to automate the generation of test case scenarios against user requirements.

Reward design is a fundamental, yet challenging aspect of reinforcement learning (RL). Researchers typically utilize feedback signals from the environment to handcraft a reward function, but this process is not always effective due to the varying scale and intricate dependencies of the feedback signals. This paper shows by exploiting certain structures, one can ease the reward design process. Specifically, we propose a hierarchical reward modeling framework -- HERON for scenarios: (I) The feedback signals naturally present hierarchy; (II) The reward is sparse, but with less important surrogate feedback to help policy learning. Both scenarios allow us to design a hierarchical decision tree induced by the importance ranking of the feedback signals to compare RL trajectories. With such preference data, we can then train a reward model for policy learning. We apply HERON to several RL applications, and we find that our framework can not only train high performing agents on a variety of difficult tasks, but also provide additional benefits such as improved sample efficiency and robustness. Our code is available at \url{//github.com/abukharin3/HERON}.

Recent studies on online reinforcement learning (RL) have demonstrated the advantages of learning multiple behaviors from a single task, as in the case of few-shot adaptation to a new environment. Although this approach is expected to yield similar benefits in offline RL, appropriate methods for learning multiple solutions have not been fully investigated in previous studies. In this study, we therefore addressed the problem of finding multiple solutions from a single task in offline RL. We propose algorithms that can learn multiple solutions in offline RL, and empirically investigate their performance. Our experimental results show that the proposed algorithm learns multiple qualitatively and quantitatively distinctive solutions in offline RL.

We present Meta MMO, a collection of many-agent minigames for use as a reinforcement learning benchmark. Meta MMO is built on top of Neural MMO, a massively multiagent environment that has been the subject of two previous NeurIPS competitions. Our work expands Neural MMO with several computationally efficient minigames. We explore generalization across Meta MMO by learning to play several minigames with a single set of weights. We release the environment, baselines, and training code under the MIT license. We hope that Meta MMO will spur additional progress on Neural MMO and, more generally, will serve as a useful benchmark for many-agent generalization.

Catastrophic Forgetting (CF) means models forgetting previously acquired knowledge when learning new data. It compromises the effectiveness of large language models (LLMs) during fine-tuning, yet the underlying causes have not been thoroughly investigated. This paper takes the first step to reveal the direct link between the flatness of the model loss landscape and the extent of CF in the field of LLMs. Based on this, we introduce the sharpness-aware minimization to mitigate CF by flattening the loss landscape. Experiments on three widely-used fine-tuning datasets, spanning different model scales, demonstrate the effectiveness of our method in alleviating CF. Analyses show that we nicely complement the existing anti-forgetting strategies, further enhancing the resistance of LLMs to CF.

Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker prediction, and outcome prognostication. However, MIL explanation methods are still lagging behind, as they are limited to small bag sizes or disregard instance interactions. We revisit MIL through the lens of explainable AI (XAI) and introduce xMIL, a refined framework with more general assumptions. We demonstrate how to obtain improved MIL explanations using layer-wise relevance propagation (LRP) and conduct extensive evaluation experiments on three toy settings and four real-world histopathology datasets. Our approach consistently outperforms previous explanation attempts with particularly improved faithfulness scores on challenging biomarker prediction tasks. Finally, we showcase how xMIL explanations enable pathologists to extract insights from MIL models, representing a significant advance for knowledge discovery and model debugging in digital histopathology.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司