We study the neighborhood polynomial and the complexity of its computation for chordal graphs. The neighborhood polynomial of a graph is the generating function of subsets of its vertices that have a common neighbor. We introduce a parameter for chordal graphs called anchor width and an algorithm to compute the neighborhood polynomial which runs in polynomial time if the anchor width is polynomially bounded. The anchor width is the maximal number of different sub-cliques of a clique which appear as a common neighborhood. Furthermore we study the anchor width for chordal graphs and some subclasses such as chordal comparability graphs and chordal graphs with bounded leafage. the leafage of a chordal graphs is the minimum number of leaves in the host tree of a subtree representation. We show that the anchor width of a chordal graph is at most $n^{\ell}$ where $\ell$ denotes the leafage. This shows that for some subclasses computing the neighborhood polynomial is possible in polynomial time while it is NP-hard for general chordal graphs.
Given a property (graph class) $\Pi$, a graph $G$, and an integer $k$, the \emph{$\Pi$-completion} problem consists in deciding whether we can turn $G$ into a graph with the property $\Pi$ by adding at most $k$ edges to $G$. The $\Pi$-completion problem is known to be NP-hard for general graphs when $\Pi$ is the property of being a proper interval graph (PIG). In this work, we study the PIG-completion problem %when $\Pi$ is the class of proper interval graphs (PIG) within different subclasses of chordal graphs. We show that the problem remains NP-complete even when restricted to split graphs. We then turn our attention to positive results and present polynomial time algorithms to solve the PIG-completion problem when the input is restricted to caterpillar and threshold graphs. We also present an efficient algorithm for the minimum co-bipartite-completion for quasi-threshold graphs, which provides a lower bound for the PIG-completion problem within this graph class.
Graph embedding maps a graph into a convenient vector-space representation for graph analysis and machine learning applications. Many graph embedding methods hinge on a sampling of context nodes based on random walks. However, random walks can be a biased sampler due to the structural properties of graphs. Most notably, random walks are biased by the degree of each node, where a node is sampled proportionally to its degree. The implication of such biases has not been clear, particularly in the context of graph representation learning. Here, we investigate the impact of the random walks' bias on graph embedding and propose residual2vec, a general graph embedding method that can debias various structural biases in graphs by using random graphs. We demonstrate that this debiasing not only improves link prediction and clustering performance but also allows us to explicitly model salient structural properties in graph embedding.
Graph Neural Networks (GNNs) have shown advantages in various graph-based applications. Most existing GNNs assume strong homophily of graph structure and apply permutation-invariant local aggregation of neighbors to learn a representation for each node. However, they fail to generalize to heterophilic graphs, where most neighboring nodes have different labels or features, and the relevant nodes are distant. Few recent studies attempt to address this problem by combining multiple hops of hidden representations of central nodes (i.e., multi-hop-based approaches) or sorting the neighboring nodes based on attention scores (i.e., ranking-based approaches). As a result, these approaches have some apparent limitations. On the one hand, multi-hop-based approaches do not explicitly distinguish relevant nodes from a large number of multi-hop neighborhoods, leading to a severe over-smoothing problem. On the other hand, ranking-based models do not joint-optimize node ranking with end tasks and result in sub-optimal solutions. In this work, we present Graph Pointer Neural Networks (GPNN) to tackle the challenges mentioned above. We leverage a pointer network to select the most relevant nodes from a large amount of multi-hop neighborhoods, which constructs an ordered sequence according to the relationship with the central node. 1D convolution is then applied to extract high-level features from the node sequence. The pointer-network-based ranker in GPNN is joint-optimized with other parts in an end-to-end manner. Extensive experiments are conducted on six public node classification datasets with heterophilic graphs. The results show that GPNN significantly improves the classification performance of state-of-the-art methods. In addition, analyses also reveal the privilege of the proposed GPNN in filtering out irrelevant neighbors and reducing over-smoothing.
We show that it is provable in PA that there is an arithmetically definable sequence $\{\phi_{n}:n \in \omega\}$ of $\Pi^{0}_{2}$-sentences, such that - PRA+$\{\phi_{n}:n \in \omega\}$ is $\Pi^{0}_{2}$-sound and $\Pi^{0}_{1}$-complete - the length of $\phi_{n}$ is bounded above by a polynomial function of $n$ with positive leading coefficient - PRA+$\phi_{n+1}$ always proves 1-consistency of PRA+$\phi_{n}$. One has that the growth in logical strength is in some sense "as fast as possible", manifested in the fact that the total general recursive functions whose totality is asserted by the true $\Pi^{0}_{2}$-sentences in the sequence are cofinal growth-rate-wise in the set of all total general recursive functions. We then develop an argument which makes use of a sequence of sentences constructed by an application of the diagonal lemma, which are generalisations in a broad sense of Hugh Woodin's "Tower of Hanoi" construction as outlined in his essay "Tower of Hanoi" in Chapter 18 of the anthology "Truth in Mathematics". The argument establishes the result that it is provable in PA that $P \neq NP$. We indicate how to pull the argument all the way down into EFA.
A connected partition is a partition of the vertices of a graph into sets that induce connected subgraphs. Such partitions naturally occur in many application areas such as road networks, and image processing. We consider Balanced Connected Partitions (BCP), where the two classical objectives for BCP are to maximize the weight of the smallest, or minimize the weight of the largest component. We study BCP on c-claw-free graphs, the class of graphs that do not have $K_{1,c}$ as an induced subgraph, and present efficient (c-1)-approximation algorithms for both objectives. In particular, due to the (3-)claw-freeness of line graphs, this also implies a 2-approximations for the edge-partition version of BCP in general graphs. In the 1970s Gy\H{o}ri and Lov\'{a}sz showed for natural numbers $w_1,\dots,w_k$ where $\sum_i w_i$ is the vertex size, that if $G$ is k-connected, then there exist a connected k-partition with part sizes $w_1,\dots,w_k$. However, to this day no polynomial algorithm to compute such partitions exists for k>4. Towards finding such a partition $T_1,\dots, T_k$, we show how to efficiently compute connected partitions that at least approximately meet the target weights, subject to the mild assumption that each $w_i$ is greater than the weight of the heaviest vertex. In particular, we give a 3-approximation for both the lower and the upper bounded version i.e. we guarantee that each $T_i$ has weight at least $\frac{w_i}{3}$ or that each $T_i$ has weight most $3w_i$, respectively. Also, we present a both-side bounded version that produces a connected partition where each $T_i$ has size at least $\frac{w_i}{3}$ and at most $\max(\{r,3\}) w_i$, where $r \geq 1$ is the ratio between the largest and smallest value in $w_1, \dots, w_k$. In particular for the balanced version, i.e.~$w_1=w_2=, \dots,=w_k$, this gives a partition with $\frac{1}{3}w_i \leq w(T_i) \leq 3w_i$.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.
Graph convolution is the core of most Graph Neural Networks (GNNs) and usually approximated by message passing between direct (one-hop) neighbors. In this work, we remove the restriction of using only the direct neighbors by introducing a powerful, yet spatially localized graph convolution: Graph diffusion convolution (GDC). GDC leverages generalized graph diffusion, examples of which are the heat kernel and personalized PageRank. It alleviates the problem of noisy and often arbitrarily defined edges in real graphs. We show that GDC is closely related to spectral-based models and thus combines the strengths of both spatial (message passing) and spectral methods. We demonstrate that replacing message passing with graph diffusion convolution consistently leads to significant performance improvements across a wide range of models on both supervised and unsupervised tasks and a variety of datasets. Furthermore, GDC is not limited to GNNs but can trivially be combined with any graph-based model or algorithm (e.g. spectral clustering) without requiring any changes to the latter or affecting its computational complexity. Our implementation is available online.
We propose a scalable Gromov-Wasserstein learning (S-GWL) method and establish a novel and theoretically-supported paradigm for large-scale graph analysis. The proposed method is based on the fact that Gromov-Wasserstein discrepancy is a pseudometric on graphs. Given two graphs, the optimal transport associated with their Gromov-Wasserstein discrepancy provides the correspondence between their nodes and achieves graph matching. When one of the graphs has isolated but self-connected nodes ($i.e.$, a disconnected graph), the optimal transport indicates the clustering structure of the other graph and achieves graph partitioning. Using this concept, we extend our method to multi-graph partitioning and matching by learning a Gromov-Wasserstein barycenter graph for multiple observed graphs; the barycenter graph plays the role of the disconnected graph, and since it is learned, so is the clustering. Our method combines a recursive $K$-partition mechanism with a regularized proximal gradient algorithm, whose time complexity is $\mathcal{O}(K(E+V)\log_K V)$ for graphs with $V$ nodes and $E$ edges. To our knowledge, our method is the first attempt to make Gromov-Wasserstein discrepancy applicable to large-scale graph analysis and unify graph partitioning and matching into the same framework. It outperforms state-of-the-art graph partitioning and matching methods, achieving a trade-off between accuracy and efficiency.
The spatial convolution layer which is widely used in the Graph Neural Networks (GNNs) aggregates the feature vector of each node with the feature vectors of its neighboring nodes. The GNN is not aware of the locations of the nodes in the global structure of the graph and when the local structures corresponding to different nodes are similar to each other, the convolution layer maps all those nodes to similar or same feature vectors in the continuous feature space. Therefore, the GNN cannot distinguish two graphs if their difference is not in their local structures. In addition, when the nodes are not labeled/attributed the convolution layers can fail to distinguish even different local structures. In this paper, we propose an effective solution to address this problem of the GNNs. The proposed approach leverages a spatial representation of the graph which makes the neural network aware of the differences between the nodes and also their locations in the graph. The spatial representation which is equivalent to a point-cloud representation of the graph is obtained by a graph embedding method. Using the proposed approach, the local feature extractor of the GNN distinguishes similar local structures in different locations of the graph and the GNN infers the topological structure of the graph from the spatial distribution of the locally extracted feature vectors. Moreover, the spatial representation is utilized to simplify the graph down-sampling problem. A new graph pooling method is proposed and it is shown that the proposed pooling method achieves competitive or better results in comparison with the state-of-the-art methods.
Spectral graph convolutional neural networks (CNNs) require approximation to the convolution to alleviate the computational complexity, resulting in performance loss. This paper proposes the topology adaptive graph convolutional network (TAGCN), a novel graph convolutional network defined in the vertex domain. We provide a systematic way to design a set of fixed-size learnable filters to perform convolutions on graphs. The topologies of these filters are adaptive to the topology of the graph when they scan the graph to perform convolution. The TAGCN not only inherits the properties of convolutions in CNN for grid-structured data, but it is also consistent with convolution as defined in graph signal processing. Since no approximation to the convolution is needed, TAGCN exhibits better performance than existing spectral CNNs on a number of data sets and is also computationally simpler than other recent methods.