Neural radiance fields (NeRF) have achieved impressive performances in view synthesis by encoding neural representations of a scene. However, NeRFs require hundreds of images per scene to synthesize photo-realistic novel views. Training them on sparse input views leads to overfitting and incorrect scene depth estimation resulting in artifacts in the rendered novel views. Sparse input NeRFs were recently regularized by providing dense depth estimated from pre-trained networks as supervision, to achieve improved performance over sparse depth constraints. However, we find that such depth priors may be inaccurate due to generalization issues. Instead, we hypothesize that the visibility of pixels in different input views can be more reliably estimated to provide dense supervision. In this regard, we compute a visibility prior through the use of plane sweep volumes, which does not require any pre-training. By regularizing the NeRF training with the visibility prior, we successfully train the NeRF with few input views. We reformulate the NeRF to also directly output the visibility of a 3D point from a given viewpoint to reduce the training time with the visibility constraint. On multiple datasets, our model outperforms the competing sparse input NeRF models including those that use learned priors. The source code for our model can be found on our project page: //nagabhushansn95.github.io/publications/2023/ViP-NeRF.html.
Social interaction is a fundamental aspect of human behavior and communication. The way individuals position themselves in relation to others, also known as proxemics, conveys social cues and affects the dynamics of social interaction. We present a novel approach that learns a 3D proxemics prior of two people in close social interaction. Since collecting a large 3D dataset of interacting people is a challenge, we rely on 2D image collections where social interactions are abundant. We achieve this by reconstructing pseudo-ground truth 3D meshes of interacting people from images with an optimization approach using existing ground-truth contact maps. We then model the proxemics using a novel denoising diffusion model called BUDDI that learns the joint distribution of two people in close social interaction directly in the SMPL-X parameter space. Sampling from our generative proxemics model produces realistic 3D human interactions, which we validate through a user study. Additionally, we introduce a new optimization method that uses the diffusion prior to reconstruct two people in close proximity from a single image without any contact annotation. Our approach recovers more accurate and plausible 3D social interactions from noisy initial estimates and outperforms state-of-the-art methods. See our project site for code, data, and model: muelea.github.io/buddi.
Humans navigate in their environment by learning a mental model of the world through passive observation and active interaction. Their world model allows them to anticipate what might happen next and act accordingly with respect to an underlying objective. Such world models hold strong promises for planning in complex environments like in autonomous driving. A human driver, or a self-driving system, perceives their surroundings with their eyes or their cameras. They infer an internal representation of the world which should: (i) have spatial memory (e.g. occlusions), (ii) fill partially observable or noisy inputs (e.g. when blinded by sunlight), and (iii) be able to reason about unobservable events probabilistically (e.g. predict different possible futures). They are embodied intelligent agents that can predict, plan, and act in the physical world through their world model. In this thesis we present a general framework to train a world model and a policy, parameterised by deep neural networks, from camera observations and expert demonstrations. We leverage important computer vision concepts such as geometry, semantics, and motion to scale world models to complex urban driving scenes. First, we propose a model that predicts important quantities in computer vision: depth, semantic segmentation, and optical flow. We then use 3D geometry as an inductive bias to operate in the bird's-eye view space. We present for the first time a model that can predict probabilistic future trajectories of dynamic agents in bird's-eye view from 360{\deg} surround monocular cameras only. Finally, we demonstrate the benefits of learning a world model in closed-loop driving. Our model can jointly predict static scene, dynamic scene, and ego-behaviour in an urban driving environment.
The success of the Neural Radiance Fields (NeRFs) for modeling and free-view rendering static objects has inspired numerous attempts on dynamic scenes. Current techniques that utilize neural rendering for facilitating free-view videos (FVVs) are restricted to either offline rendering or are capable of processing only brief sequences with minimal motion. In this paper, we present a novel technique, Residual Radiance Field or ReRF, as a highly compact neural representation to achieve real-time FVV rendering on long-duration dynamic scenes. ReRF explicitly models the residual information between adjacent timestamps in the spatial-temporal feature space, with a global coordinate-based tiny MLP as the feature decoder. Specifically, ReRF employs a compact motion grid along with a residual feature grid to exploit inter-frame feature similarities. We show such a strategy can handle large motions without sacrificing quality. We further present a sequential training scheme to maintain the smoothness and the sparsity of the motion/residual grids. Based on ReRF, we design a special FVV codec that achieves three orders of magnitudes compression rate and provides a companion ReRF player to support online streaming of long-duration FVVs of dynamic scenes. Extensive experiments demonstrate the effectiveness of ReRF for compactly representing dynamic radiance fields, enabling an unprecedented free-viewpoint viewing experience in speed and quality.
Training good representations for items is critical in recommender models. Typically, an item is assigned a unique randomly generated ID, and is commonly represented by learning an embedding corresponding to the value of the random ID. Although widely used, this approach have limitations when the number of items are large and items are power-law distributed -- typical characteristics of real-world recommendation systems. This leads to the item cold-start problem, where the model is unable to make reliable inferences for tail and previously unseen items. Removing these ID features and their learned embeddings altogether to combat cold-start issue severely degrades the recommendation quality. Content-based item embeddings are more reliable, but they are expensive to store and use, particularly for users' past item interaction sequence. In this paper, we use Semantic IDs, a compact discrete item representations learned from content embeddings using RQ-VAE that captures hierarchy of concepts in items. We showcase how we use them as a replacement of item IDs in a resource-constrained ranking model used in an industrial-scale video sharing platform. Moreover, we show how Semantic IDs improves the generalization ability of our system, without sacrificing top-level metrics.
We present Viewset Diffusion: a framework for training image-conditioned 3D generative models from 2D data. Image-conditioned 3D generative models allow us to address the inherent ambiguity in single-view 3D reconstruction. Given one image of an object, there is often more than one possible 3D volume that matches the input image, because a single image never captures all sides of an object. Deterministic models are inherently limited to producing one possible reconstruction and therefore make mistakes in ambiguous settings. Modelling distributions of 3D shapes is challenging because 3D ground truth data is often not available. We propose to solve the issue of data availability by training a diffusion model which jointly denoises a multi-view image set.We constrain the output of Viewset Diffusion models to a single 3D volume per image set, guaranteeing consistent geometry. Training is done through reconstruction losses on renderings, allowing training with only three images per object. Our design of architecture and training scheme allows our model to perform 3D generation and generative, ambiguity-aware single-view reconstruction in a feed-forward manner. Project page: szymanowiczs.github.io/viewset-diffusion.
Neural Radiance Field (NeRF) has recently emerged as a powerful representation to synthesize photorealistic novel views. While showing impressive performance, it relies on the availability of dense input views with highly accurate camera poses, thus limiting its application in real-world scenarios. In this work, we introduce Sparse Pose Adjusting Radiance Field (SPARF), to address the challenge of novel-view synthesis given only few wide-baseline input images (as low as 3) with noisy camera poses. Our approach exploits multi-view geometry constraints in order to jointly learn the NeRF and refine the camera poses. By relying on pixel matches extracted between the input views, our multi-view correspondence objective enforces the optimized scene and camera poses to converge to a global and geometrically accurate solution. Our depth consistency loss further encourages the reconstructed scene to be consistent from any viewpoint. Our approach sets a new state of the art in the sparse-view regime on multiple challenging datasets.
In this paper, we propose binary radiance fields (BiRF), a storage-efficient radiance field representation employing binary feature encoding that encodes local features using binary encoding parameters in a format of either $+1$ or $-1$. This binarization strategy lets us represent the feature grid with highly compact feature encoding and a dramatic reduction in storage size. Furthermore, our 2D-3D hybrid feature grid design enhances the compactness of feature encoding as the 3D grid includes main components while 2D grids capture details. In our experiments, binary radiance field representation successfully outperforms the reconstruction performance of state-of-the-art (SOTA) efficient radiance field models with lower storage allocation. In particular, our model achieves impressive results in static scene reconstruction, with a PSNR of 31.53 dB for Synthetic-NeRF scenes, 34.26 dB for Synthetic-NSVF scenes, 28.02 dB for Tanks and Temples scenes while only utilizing 0.7 MB, 0.8 MB, and 0.8 MB of storage space, respectively. We hope the proposed binary radiance field representation will make radiance fields more accessible without a storage bottleneck.
Robotic manipulation is critical for admitting robotic agents to various application domains, like intelligent assistance. A major challenge therein is the effective 6DoF grasping of objects in cluttered environments from any viewpoint without requiring additional scene exploration. We introduce $\textit{NeuGraspNet}$, a novel method for 6DoF grasp detection that leverages recent advances in neural volumetric representations and surface rendering. Our approach learns both global (scene-level) and local (grasp-level) neural surface representations, enabling effective and fully implicit 6DoF grasp quality prediction, even in unseen parts of the scene. Further, we reinterpret grasping as a local neural surface rendering problem, allowing the model to encode the interaction between the robot's end-effector and the object's surface geometry. NeuGraspNet operates on single viewpoints and can sample grasp candidates in occluded scenes, outperforming existing implicit and semi-implicit baseline methods in the literature. We demonstrate the real-world applicability of NeuGraspNet with a mobile manipulator robot, grasping in open spaces with clutter by rendering the scene, reasoning about graspable areas of different objects, and selecting grasps likely to succeed without colliding with the environment. Visit our project website: //sites.google.com/view/neugraspnet
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/