In social choice theory, anonymity (all agents being treated equally) and neutrality (all alternatives being treated equally) are widely regarded as ``minimal demands'' and ``uncontroversial'' axioms of equity and fairness. However, the ANR impossibility -- there is no voting rule that satisfies anonymity, neutrality, and resolvability (always choosing one winner) -- holds even in the simple setting of two alternatives and two agents. How to design voting rules that optimally satisfy anonymity, neutrality, and resolvability remains an open question. We address the optimal design question for a wide range of preferences and decisions that include ranked lists and committees. Our conceptual contribution is a novel and strong notion of most equitable refinements that optimally preserves anonymity and neutrality for any irresolute rule that satisfies the two axioms. Our technical contributions are twofold. First, we characterize the conditions for the ANR impossibility to hold under general settings, especially when the number of agents is large. Second, we propose the most-favorable-permutation (MFP) tie-breaking to compute a most equitable refinement and design a polynomial-time algorithm to compute MFP when agents' preferences are full rankings.
Coded computing is a method for mitigating straggling workers in a centralized computing network, by using erasure-coding techniques. Federated learning is a decentralized model for training data distributed across client devices. In this work we propose approximating the inverse of an aggregated data matrix, where the data is generated by clients; similar to the federated learning paradigm, while also being resilient to stragglers. To do so, we propose a coded computing method based on gradient coding. We modify this method so that the coordinator does not access the local data at any point; while the clients access the aggregated matrix in order to complete their tasks. The network we consider is not centrally administrated, and the communications which take place are secure against potential eavesdroppers.
Current reinforcement learning algorithms train an agent using forward-generated trajectories, which provide little guidance so that the agent can explore as much as possible. While realizing the value of reinforcement learning results from sufficient exploration, this approach leads to a trade-off in losing sample efficiency, an essential factor impacting algorithm performance. Previous tasks use reward-shaping techniques and network structure modification to increase sample efficiency. However, these methods require many steps to implement. In this work, we propose novel backward curriculum reinforcement learning that begins training the agent using the backward trajectory of the episode instead of the original forward trajectory. This approach provides the agent with a strong reward signal, enabling more sample-efficient learning. Moreover, our method only requires a minor change in the algorithm of reversing the order of the trajectory before agent training, allowing a straightforward application to any state-of-the-art algorithm.
Traditionally, social choice theory has only been applicable to choices among a few predetermined alternatives but not to more complex decisions such as collectively selecting a textual statement. We introduce generative social choice, a framework that combines the mathematical rigor of social choice theory with large language models' capability to generate text and extrapolate preferences. This framework divides the design of AI-augmented democratic processes into two components: first, proving that the process satisfies rigorous representation guarantees when given access to oracle queries; second, empirically validating that these queries can be approximately implemented using a large language model. We illustrate this framework by applying it to the problem of generating a slate of statements that is representative of opinions expressed as free-form text, for instance in an online deliberative process.
Mediation analysis learns the causal effect transmitted via mediator variables between treatments and outcomes and receives increasing attention in various scientific domains to elucidate causal relations. Most existing works focus on point-exposure studies where each subject only receives one treatment at a single time point. However, there are a number of applications (e.g., mobile health) where the treatments are sequentially assigned over time and the dynamic mediation effects are of primary interest. Proposing a reinforcement learning (RL) framework, we are the first to evaluate dynamic mediation effects in settings with infinite horizons. We decompose the average treatment effect into an immediate direct effect, an immediate mediation effect, a delayed direct effect, and a delayed mediation effect. Upon the identification of each effect component, we further develop robust and semi-parametrically efficient estimators under the RL framework to infer these causal effects. The superior performance of the proposed method is demonstrated through extensive numerical studies, theoretical results, and an analysis of a mobile health dataset.
Outlier detection is critical in real applications to prevent financial fraud, defend network intrusions, or detecting imminent device failures. To reduce the human effort in evaluating outlier detection results and effectively turn the outliers into actionable insights, the users often expect a system to automatically produce interpretable summarizations of subgroups of outlier detection results. Unfortunately, to date no such systems exist. To fill this gap, we propose STAIR which learns a compact set of human understandable rules to summarize and explain the anomaly detection results. Rather than use the classical decision tree algorithms to produce these rules, STAIR proposes a new optimization objective to produce a small number of rules with least complexity, hence strong interpretability, to accurately summarize the detection results. The learning algorithm of STAIR produces a rule set by iteratively splitting the large rules and is optimal in maximizing this objective in each iteration. Moreover, to effectively handle high dimensional, highly complex data sets which are hard to summarize with simple rules, we propose a localized STAIR approach, called L-STAIR. Taking data locality into consideration, it simultaneously partitions data and learns a set of localized rules for each partition. Our experimental study on many outlier benchmark datasets shows that STAIR significantly reduces the complexity of the rules required to summarize the outlier detection results, thus more amenable for humans to understand and evaluate, compared to the decision tree methods.
Popularity bias is a widespread problem in the field of recommender systems, where popular items tend to dominate recommendation results. In this work, we propose 'Test Time Embedding Normalization' as a simple yet effective strategy for mitigating popularity bias, which surpasses the performance of the previous mitigation approaches by a significant margin. Our approach utilizes the normalized item embedding during the inference stage to control the influence of embedding magnitude, which is highly correlated with item popularity. Through extensive experiments, we show that our method combined with the sampled softmax loss effectively reduces popularity bias compare to previous approaches for bias mitigation. We further investigate the relationship between user and item embeddings and find that the angular similarity between embeddings distinguishes preferable and non-preferable items regardless of their popularity. The analysis explains the mechanism behind the success of our approach in eliminating the impact of popularity bias. Our code is available at //github.com/ml-postech/TTEN.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.