亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large-scale dynamics of the oceans and the atmosphere are governed by primitive equations (PEs). Due to the nonlinearity and nonlocality, the numerical study of the PEs is generally challenging. Neural networks have been shown to be a promising machine learning tool to tackle this challenge. In this work, we employ physics-informed neural networks (PINNs) to approximate the solutions to the PEs and study the error estimates. We first establish the higher-order regularity for the global solutions to the PEs with either full viscosity and diffusivity, or with only the horizontal ones. Such a result for the case with only the horizontal ones is new and required in the analysis under the PINNs framework. Then we prove the existence of two-layer tanh PINNs of which the corresponding training error can be arbitrarily small by taking the width of PINNs to be sufficiently wide, and the error between the true solution and its approximation can be arbitrarily small provided that the training error is small enough and the sample set is large enough. In particular, all the estimates are a priori, and our analysis includes higher-order (in spatial Sobolev norm) error estimates. Numerical results on prototype systems are presented to further illustrate the advantage of using the $H^s$ norm during the training.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡(luo)會議。 Publisher:IFIP。 SIT:

Deep learning models have seen significant successes in numerous applications, but their inner workings remain elusive. The purpose of this work is to quantify the learning process of deep neural networks through the lens of a novel topological invariant called magnitude. Magnitude is an isometry invariant; its properties are an active area of research as it encodes many known invariants of a metric space. We use magnitude to study the internal representations of neural networks and propose a new method for determining their generalisation capabilities. Moreover, we theoretically connect magnitude dimension and the generalisation error, and demonstrate experimentally that the proposed framework can be a good indicator of the latter.

The study of partial differential equations (PDE) through the framework of deep learning emerged a few years ago leading to the impressive approximations of simple dynamics. Graph neural networks (GNN) turned out to be very useful in those tasks by allowing the treatment of unstructured data often encountered in the field of numerical resolutions of PDE. However, the resolutions of harder PDE such as Navier-Stokes equations are still a challenging task and most of the work done on the latter concentrate either on simulating the flow around simple geometries or on qualitative results that looks physical for design purpose. In this study, we try to leverage the work done on deep learning for PDE and GNN by proposing an adaptation of a known architecture in order to tackle the task of approximating the solution of the two-dimensional steady-state incompressible Navier-Stokes equations over different airfoil geometries. In addition to that, we test our model not only on its performance over the volume but also on its performance to approximate surface quantities such as the wall shear stress or the isostatic pressure leading to the inference of global coefficients such as the lift and the drag of our airfoil in order to allow design exploration. This work takes place in a longer project that aims to approximate three dimensional steady-state solutions over industrial geometries.

This paper provides an error estimate for the u-series decomposition of the Coulomb interaction in molecular dynamics simulations. We show that the number of truncated Gaussians $M$ in the u-series and the base of interpolation nodes $b$ in the bilateral serial approximation are two key parameters for the algorithm accuracy, and that the errors converge as $\mathcal{O}(b^{-M})$ for the energy and $\mathcal{O}(b^{-3M})$ for the force. Error bounds due to numerical quadrature and cutoff in both the electrostatic energy and forces are obtained. Closed-form formulae are also provided, which are useful in the parameter setup for simulations under a given accuracy. The results are verified by analyzing the errors of two practical systems.

Estimating the material distribution of Earth's subsurface is a challenging task in seismology and earthquake engineering. The recent development of physics-informed neural network (PINN) has shed new light on seismic inversion. In this paper, we present a PINN framework for seismic wave inversion in layered (1D) semi-infinite domain. The absorbing boundary condition is incorporated into the network as a soft regularizer for avoiding excessive computation. In specific, we design a lightweight network to learn the unknown material distribution and a deep neural network to approximate solution variables. The entire network is end-to-end and constrained by both sparse measurement data and the underlying physical laws (i.e., governing equations and initial/boundary conditions). Various experiments have been conducted to validate the effectiveness of our proposed approach for inverse modeling of seismic wave propagation in 1D semi-infinite domain.

We propose a solution for linear inverse problems based on higher-order Langevin diffusion. More precisely, we propose pre-conditioned second-order and third-order Langevin dynamics that provably sample from the posterior distribution of our unknown variables of interest while being computationally more efficient than their first-order counterpart and the non-conditioned versions of both dynamics. Moreover, we prove that both pre-conditioned dynamics are well-defined and have the same unique invariant distributions as the non-conditioned cases. We also incorporate an annealing procedure that has the double benefit of further accelerating the convergence of the algorithm and allowing us to accommodate the case where the unknown variables are discrete. Numerical experiments in two different tasks (MIMO symbol detection and channel estimation) showcase the generality of our method and illustrate the high performance achieved relative to competing approaches (including learning-based ones) while having comparable or lower computational complexity.

Neural network verification mainly focuses on local robustness properties. However, often it is important to know whether a given property holds globally for the whole input domain, and if not then for what proportion of the input the property is true. While exact preimage generation can construct an equivalent representation of neural networks that can aid such (quantitative) global robustness verification, it is intractable at scale. In this work, we propose an efficient and practical anytime algorithm for generating symbolic under-approximations of the preimage of neural networks based on linear relaxation. Our algorithm iteratively minimizes the volume approximation error by partitioning the input region into subregions, where the neural network relaxation bounds become tighter. We further employ sampling and differentiable approximations to the volume in order to prioritize regions to split and optimize the parameters of the relaxation, leading to faster improvement and more compact under-approximations. Evaluation results demonstrate that our approach is able to generate preimage approximations significantly faster than exact methods and scales to neural network controllers for which exact preimage generation is intractable. We also demonstrate an application of our approach to quantitative global verification.

Model independent techniques for constructing background data templates using generative models have shown great promise for use in searches for new physics processes at the LHC. We introduce a major improvement to the CURTAINs method by training the conditional normalizing flow between two side-band regions using maximum likelihood estimation instead of an optimal transport loss. The new training objective improves the robustness and fidelity of the transformed data and is much faster and easier to train. We compare the performance against the previous approach and the current state of the art using the LHC Olympics anomaly detection dataset, where we see a significant improvement in sensitivity over the original CURTAINs method. Furthermore, CURTAINsF4F requires substantially less computational resources to cover a large number of signal regions than other fully data driven approaches. When using an efficient configuration, an order of magnitude more models can be trained in the same time required for ten signal regions, without a significant drop in performance.

It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司