亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we consider PIDEs with gradient-independent Lipschitz continuous nonlinearities and prove that deep neural networks with ReLU activation function can approximate solutions of such semilinear PIDEs without curse of dimensionality in the sense that the required number of parameters in the deep neural networks increases at most polynomially in both the dimension $ d $ of the corresponding PIDE and the reciprocal of the prescribed accuracy $\epsilon $.

相關內容

維度災難是指在高維空間中分析和組織數據時出現的各種現象,這些現象在低維設置(例如日常體驗的三維物理空間)中不會發生。

We propose a general optimization-based framework for computing differentially private M-estimators and a new method for constructing differentially private confidence regions. Firstly, we show that robust statistics can be used in conjunction with noisy gradient descent or noisy Newton methods in order to obtain optimal private estimators with global linear or quadratic convergence, respectively. We establish local and global convergence guarantees, under both local strong convexity and self-concordance, showing that our private estimators converge with high probability to a small neighborhood of the non-private M-estimators. Secondly, we tackle the problem of parametric inference by constructing differentially private estimators of the asymptotic variance of our private M-estimators. This naturally leads to approximate pivotal statistics for constructing confidence regions and conducting hypothesis testing. We demonstrate the effectiveness of a bias correction that leads to enhanced small-sample empirical performance in simulations. We illustrate the benefits of our methods in several numerical examples.

In this paper, we present a rigorous analysis of root-exponential convergence of Hermite approximations, including projection and interpolation methods, for functions that are analytic in an infinite strip containing the real axis and satisfy certain restrictions on the asymptotic behavior at infinity within this strip. Asymptotically sharp error bounds in the weighted and maximum norms are derived. The key ingredients of our analysis are some remarkable contour integral representations for the Hermite coefficients and the remainder of Hermite spectral interpolations. Further extensions to Gauss--Hermite quadrature, Hermite spectral differentiations, generalized Hermite spectral approximations and the scaling factor of Hermite approximation are also discussed. Numerical experiments confirm our theoretical results.

This work is concerned with solving high-dimensional Fokker-Planck equations with the novel perspective that solving the PDE can be reduced to independent instances of density estimation tasks based on the trajectories sampled from its associated particle dynamics. With this approach, one sidesteps error accumulation occurring from integrating the PDE dynamics on a parameterized function class. This approach significantly simplifies deployment, as one is free of the challenges of implementing loss terms based on the differential equation. In particular, we introduce a novel class of high-dimensional functions called the functional hierarchical tensor (FHT). The FHT ansatz leverages a hierarchical low-rank structure, offering the advantage of linearly scalable runtime and memory complexity relative to the dimension count. We introduce a sketching-based technique that performs density estimation over particles simulated from the particle dynamics associated with the equation, thereby obtaining a representation of the Fokker-Planck solution in terms of our ansatz. We apply the proposed approach successfully to three challenging time-dependent Ginzburg-Landau models with hundreds of variables.

Finding the k-medianin a network involves identifying a subset of k vertices that minimize the total distance to all other vertices in a graph. This problem has been extensively studied in computer science, graph theory, operations research, and numerous areas due to its significance in a wide range of applications. While known to be computationally challenging (NP-hard) several approximation algorithms have been proposed, most with high-order polynomial-time complexity. However, the graph topology of complex networks with heavy-tailed degree distributions present characteristics that can be exploited to yield custom-tailored algorithms. We compare eight algorithms specifically designed for complex networks and evaluate their performance based on accuracy and efficiency for problems of varying sizes and application areas. Rather than relying on a small number of problems, we conduct over 16,000 experiments covering a wide range of network sizes and k-median{} values. While individual results vary, a few methods provide consistently good results. We draw general conclusions about how algorithms perform in practice and provide general guidelines for solutions.

Numerical analysis for the stochastic Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the pre-existing error estimates of finite element methods for the stochastic Stokes equations { in the $L^\infty(0, T; L^2(\Omega; L^2))$ norm} all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The objective of this article is to establish strong convergence of $O(\tau^{1/2}+ h^2)$ in the $L^\infty(0, T; L^2(\Omega; L^2))$ norm for approximating the velocity, and strong convergence of $O(\tau^{1/2}+ h)$ in the $L^{\infty}(0, T;L^2(\Omega;L^2))$ norm for approximating the time integral of pressure, where $\tau$ and $h$ denote the temporal step size and spatial mesh size, respectively. The error estimates are of optimal order for the spatial discretization considered in this article (with MINI element), and consistent with the numerical experiments. The analysis is based on the fully discrete Stokes semigroup technique and the corresponding new estimates.

In this paper we prove that rectified deep neural networks do not suffer from the curse of dimensionality when approximating McKean--Vlasov SDEs in the sense that the number of parameters in the deep neural networks only grows polynomially in the space dimension $d$ of the SDE and the reciprocal of the accuracy $\epsilon$.

In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the $L^\infty(I;L^2(\Omega))$, $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms have been shown. The main result of the present work extends the error estimate in the $L^\infty(I;L^2(\Omega))$ norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specially tailored discrete Gronwall lemma is presented. The techniques developed towards showing the $L^\infty(I;L^2(\Omega))$ error estimate, also allow us to show best approximation type error estimates in the $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms, which complement this work.

In this paper, we discuss some numerical realizations of Shannon's sampling theorem. First we show the poor convergence of classical Shannon sampling sums by presenting sharp upper and lower bounds of the norm of the Shannon sampling operator. In addition, it is known that in the presence of noise in the samples of a bandlimited function, the convergence of Shannon sampling series may even break down completely. To overcome these drawbacks, one can use oversampling and regularization with a convenient window function. Such a window function can be chosen either in frequency domain or in time domain. We especially put emphasis on the comparison of these two approaches in terms of error decay rates. It turns out that the best numerical results are obtained by oversampling and regularization in time domain using a sinh-type window function or a continuous Kaiser-Bessel window function, which results in an interpolating approximation with localized sampling. Several numerical experiments illustrate the theoretical results.

In this study, we present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptical equations. We did not impose a shape-regularity mesh condition for the analysis. Therefore, anisotropic meshes can be used. The main contributions of this study include providing new proof of the consistency term. This enabled us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart--Thomas and Morley finite element spaces. Our results show optimal convergence rates and imply that the modified Morley FEM may be effective for errors.

In this article, we propose and study a stochastic preconditioned Douglas-Rachford splitting method to solve saddle-point problems which have separable dual variables. We prove the almost sure convergence of the iteration sequences in Hilbert spaces for a class of convexconcave and nonsmooth saddle-point problems. We also provide the sublinear convergence rate for the ergodic sequence with respect to the expectation of the restricted primal-dual gap functions. Numerical experiments show the high efficiency of the proposed stochastic preconditioned Douglas-Rachford splitting methods.

北京阿比特科技有限公司