亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study was groundbreaking in its application of neural network models for nitrate management in the Recirculating Aquaculture System (RAS). A hybrid neural network model was proposed, which accurately predicted daily nitrate concentration and its trends using six water quality parameters. We conducted a 105-day aquaculture experiment, during which we collected 450 samples from five sets of RAS to train our model (C-L-A model) which incorporates Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-Attention. Furthermore, we obtained 90 samples from a standalone RAS as the testing data to evaluate the performance of the model in practical applications. The experimental results proved that the C-L-A model accurately predicted nitrate concentration in RAS and maintained good performance even with a reduced proportion of training data. We recommend using water quality parameters from the past 7 days to forecast future nitrate concentration, as this timeframe allows the model to achieve maximum generalization capability. Additionally, we compared the performance of the C-L-A model with three basic neural network models (CNN, LSTM, self-Attention) as well as three hybrid neural network models (CNN-LSTM, CNN-Attention, LSTM-Attention). The results demonstrated that the C-L-A model (R2=0.956) significantly outperformed the other neural network models (R2=0.901-0.927). Our study suggests that the utilization of neural network models, specifically the C-L-A model, could potentially assist the RAS industry in conserving resources for daily nitrate monitoring.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Recently, neural networks have been extensively employed to solve partial differential equations (PDEs) in physical system modeling. While major studies focus on learning system evolution on predefined static mesh discretizations, some methods utilize reinforcement learning or supervised learning techniques to create adaptive and dynamic meshes, due to the dynamic nature of these systems. However, these approaches face two primary challenges: (1) the need for expensive optimal mesh data, and (2) the change of the solution space's degree of freedom and topology during mesh refinement. To address these challenges, this paper proposes a neural PDE solver with a neural mesh adapter. To begin with, we introduce a novel data-free neural mesh adaptor, called Data-free Mesh Mover (DMM), with two main innovations. Firstly, it is an operator that maps the solution to adaptive meshes and is trained using the Monge-Amp\`ere equation without optimal mesh data. Secondly, it dynamically changes the mesh by moving existing nodes rather than adding or deleting nodes and edges. Theoretical analysis shows that meshes generated by DMM have the lowest interpolation error bound. Based on DMM, to efficiently and accurately model dynamic systems, we develop a moving mesh based neural PDE solver (MM-PDE) that embeds the moving mesh with a two-branch architecture and a learnable interpolation framework to preserve information within the data. Empirical experiments demonstrate that our method generates suitable meshes and considerably enhances accuracy when modeling widely considered PDE systems. The code can be found at: //github.com/Peiyannn/MM-PDE.git.

Task Free online continual learning (TF-CL) is a challenging problem where the model incrementally learns tasks without explicit task information. Although training with entire data from the past, present as well as future is considered as the gold standard, naive approaches in TF-CL with the current samples may be conflicted with learning with samples in the future, leading to catastrophic forgetting and poor plasticity. Thus, a proactive consideration of an unseen future sample in TF-CL becomes imperative. Motivated by this intuition, we propose a novel TF-CL framework considering future samples and show that injecting adversarial perturbations on both input data and decision-making is effective. Then, we propose a novel method named Doubly Perturbed Continual Learning (DPCL) to efficiently implement these input and decision-making perturbations. Specifically, for input perturbation, we propose an approximate perturbation method that injects noise into the input data as well as the feature vector and then interpolates the two perturbed samples. For decision-making process perturbation, we devise multiple stochastic classifiers. We also investigate a memory management scheme and learning rate scheduling reflecting our proposed double perturbations. We demonstrate that our proposed method outperforms the state-of-the-art baseline methods by large margins on various TF-CL benchmarks.

This paper introduces an online physical enhanced residual learning (PERL) framework for Connected Autonomous Vehicles (CAVs) platoon, aimed at addressing the challenges posed by the dynamic and unpredictable nature of traffic environments. The proposed framework synergistically combines a physical model, represented by Model Predictive Control (MPC), with data-driven online Q-learning. The MPC controller, enhanced for centralized CAV platoons, employs vehicle velocity as a control input and focuses on multi-objective cooperative optimization. The learning-based residual controller enriches the MPC with prior knowledge and corrects residuals caused by traffic disturbances. The PERL framework not only retains the interpretability and transparency of physics-based models but also significantly improves computational efficiency and control accuracy in real-world scenarios. The experimental results present that the online Q-learning PERL controller, in comparison to the MPC controller and PERL controller with a neural network, exhibits significantly reduced position and velocity errors. Specifically, the PERL's cumulative absolute position and velocity errors are, on average, 86.73% and 55.28% lower than the MPC's, and 12.82% and 18.83% lower than the neural network-based PERL's, in four tests with different reference trajectories and errors. The results demonstrate our advanced framework's superior accuracy and quick convergence capabilities, proving its effectiveness in maintaining platoon stability under diverse conditions.

While neural networks (NNs) have a large potential as goal-oriented controllers for Cyber-Physical Systems, verifying the safety of neural network based control systems (NNCSs) poses significant challenges for the practical use of NNs -- especially when safety is needed for unbounded time horizons. One reason for this is the intractability of NN and hybrid system analysis. We introduce VerSAILLE (Verifiably Safe AI via Logically Linked Envelopes): The first approach for the combination of differential dynamic logic (dL) and NN verification. By joining forces, we can exploit the efficiency of NN verification tools while retaining the rigor of dL. We reflect a safety proof for a controller envelope in an NN to prove the safety of concrete NNCS on an infinite-time horizon. The NN verification properties resulting from VerSAILLE typically require nonlinear arithmetic while efficient NN verification tools merely support linear arithmetic. To overcome this divide, we present Mosaic: The first sound and complete verification approach for polynomial real arithmetic properties on piece-wise linear NNs. Mosaic lifts off-the-shelf tools for linear properties to the nonlinear setting. An evaluation on case studies, including adaptive cruise control and airborne collision avoidance, demonstrates the versatility of VerSAILLE and Mosaic: It supports the certification of infinite-time horizon safety and the exhaustive enumeration of counterexample regions while significantly outperforming State-of-the-Art tools in closed-loop NNV.

This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods and implements the Lagrangian coordinate system transformation of the data in a fully differentiable and GPU-accelerated manner to allow for real-time end-to-end training and inference. Based on our evaluation, LUPIN matches and exceeds the performance of the chosen benchmark, opening the door for other Lagrangian machine learning models.

Cloud computing services provide scalable and cost-effective solutions for data storage, processing, and collaboration. Alongside their growing popularity, concerns related to their security vulnerabilities leading to data breaches and sophisticated attacks such as ransomware are growing. To address these, first, we propose a generic framework to express relations between different cloud objects such as users, datastores, security roles, to model access control policies in cloud systems. Access control misconfigurations are often the primary driver for cloud attacks. Second, we develop a PDDL model for detecting security vulnerabilities which can for example lead to widespread attacks such as ransomware, sensitive data exfiltration among others. A planner can then generate attacks to identify such vulnerabilities in the cloud. Finally, we test our approach on 14 real Amazon AWS cloud configurations of different commercial organizations. Our system can identify a broad range of security vulnerabilities, which state-of-the-art industry tools cannot detect.

The problem of fitting concentric ellipses is a vital problem in image processing, pattern recognition, and astronomy. Several methods have been developed but all address very special cases. In this paper, this problem has been investigated under a more general setting, and two estimators for estimating the parameters have been proposed. Since both estimators are obtained iterative fashion, several numerical schemes are investigated and the best initial guess is determined. Furthermore, the constraint Cram\'{e} Rao lower bound for this problem is derived and it is compared with the variance of each estimator. Finally, our theory is assessed and validated by a series of numerical experiments on both real and synthetic data.

We study the problem of reward poisoning attacks against general offline reinforcement learning with deep neural networks for function approximation. We consider a black-box threat model where the attacker is completely oblivious to the learning algorithm and its budget is limited by constraining both the amount of corruption at each data point, and the total perturbation. We propose an attack strategy called `policy contrast attack'. The high-level idea is to make some low-performing policies appear as high-performing while making high-performing policies appear as low-performing. To the best of our knowledge, we propose the first black-box reward poisoning attack in the general offline RL setting. We provide theoretical insights on the attack design and empirically show that our attack is efficient against current state-of-the-art offline RL algorithms in different kinds of learning datasets.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. See related articles at //explained.ai

北京阿比特科技有限公司