亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop both first and second order numerical optimization methods to solve non-smooth optimization problems featuring a shared sparsity penalty, constrained by differential equations with uncertainty. To alleviate the curse of dimensionality we use tensor product approximations. To handle the non-smoothness of the objective function we introduce a smoothed version of the shared sparsity objective. We consider both a benchmark elliptic PDE constraint, and a more realistic topology optimization problem. We demonstrate that the error converges linearly in iterations and the smoothing parameter, and faster than algebraically in the number of degrees of freedom, consisting of the number of quadrature points in one variable and tensor ranks. Moreover, in the topology optimization problem, the smoothed shared sparsity penalty actually reduces the tensor ranks compared to the unpenalised solution. This enables us to find a sparse high-resolution design under a high-dimensional uncertainty.

相關內容

A statistical network model with overlapping communities can be generated as a superposition of mutually independent random graphs of varying size. The model is parameterized by the number of nodes, the number of communities, and the joint distribution of the community size and the edge probability. This model admits sparse parameter regimes with power-law limiting degree distributions and non-vanishing clustering coefficients. This article presents large-scale approximations of clique and cycle frequencies for graph samples generated by the model, which are valid for regimes with unbounded numbers of overlapping communities. Our results reveal the growth rates of these subgraph frequencies and show that their theoretical densities can be reliably estimated from data.

We propose a procedure for the numerical approximation of invariance equations arising in the moment matching technique associated with reduced-order modeling of high-dimensional dynamical systems. The Galerkin residual method is employed to find an approximate solution to the invariance equation using a Newton iteration on the coefficients of a monomial basis expansion of the solution. These solutions to the invariance equations can then be used to construct reduced-order models. We assess the ability of the method to solve the invariance PDE system as well as to achieve moment matching and recover a system's steady-state behaviour for linear and nonlinear signal generators with system dynamics up to $n=1000$ dimensions.

The proximal Galerkin finite element method is a high-order, low-iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of point-wise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop a scalable, mesh-independent algorithm for optimal design with pointwise bound constraints. This paper also introduces the latent variable proximal point (LVPP) algorithm, from which the proximal Galerkin method derives. When analyzing the classical obstacle problem, we discover that the underlying variational inequality can be replaced by a sequence of second-order partial differential equations (PDEs) that are readily discretized and solved with, e.g., the proximal Galerkin method. Throughout this work, we arrive at several contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field, density-based topology optimization. The complete proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis. This work is accompanied by open-source implementations of our methods to facilitate reproduction and broader adoption.

Conic optimization plays a crucial role in many machine learning (ML) problems. However, practical algorithms for conic constrained ML problems with large datasets are often limited to specific use cases, as stochastic algorithms for general conic optimization remain underdeveloped. To fill this gap, we introduce a stochastic interior-point method (SIPM) framework for general conic optimization, along with four novel SIPM variants leveraging distinct stochastic gradient estimators. Under mild assumptions, we establish the global convergence rates of our proposed SIPMs, which, up to a logarithmic factor, match the best-known rates in stochastic unconstrained optimization. Finally, our numerical experiments on robust linear regression, multi-task relationship learning, and clustering data streams demonstrate the effectiveness and efficiency of our approach.

Two common methods for solving absolute value equations (AVE) are SOR-like iteration method and fixed point iteration (FPI) method. In this paper, novel convergence analysis, which result wider convergence range, of the SOR-like iteration and the FPI are given. Based on the new analysis, a new optimal iterative parameter with a analytical form is obtained for the SOR-like iteration. In addition, an optimal iterative parameter with a analytical form is also obtained for FPI. Surprisingly, the SOR-like iteration and the FPI are the same whenever they are equipped with our optimal iterative parameters. As a by product, we give two new constructive proof for a well known sufficient condition such that AVE has a unique solution for any right hand side. Numerical results demonstrate our claims.

Westudythestatisticalpropertiesoftheentropicoptimal(self) transport problem for smooth probability measures. We provide an accurate description of the limit distribution for entropic (self-)potentials and plans for shrinking regularization parameter, which strongly contrasts prior work where the regularization parameter is held fix. Additionally, we show that a rescaling of the barycentric projection of the empirical entropic optimal self-transport plans converges to the score function, a central object for diffusion models, and characterize the asymptotic fluctuations both pointwise and in L2. Finally, we describe under what conditions the methods used enable to derive (pointwise) limiting distribution results for the empirical entropic optimal transport potentials in the case of two different measures and appropriately chosen shrinking regularization parameter. This endeavour requires better understanding the composition of Sinkhorn operators, a result of independent interest.

A discrete spatial lattice can be cast as a network structure over which spatially-correlated outcomes are observed. A second network structure may also capture similarities among measured features, when such information is available. Incorporating the network structures when analyzing such doubly-structured data can improve predictive power, and lead to better identification of important features in the data-generating process. Motivated by applications in spatial disease mapping, we develop a new doubly regularized regression framework to incorporate these network structures for analyzing high-dimensional datasets. Our estimators can be easily implemented with standard convex optimization algorithms. In addition, we describe a procedure to obtain asymptotically valid confidence intervals and hypothesis tests for our model parameters. We show empirically that our framework provides improved predictive accuracy and inferential power compared to existing high-dimensional spatial methods. These advantages hold given fully accurate network information, and also with networks which are partially misspecified or uninformative. The application of the proposed method to modeling COVID-19 mortality data suggests that it can improve prediction of deaths beyond standard spatial models, and that it selects relevant covariates more often.

For several types of information relations, the induced rough sets system RS does not form a lattice but only a partially ordered set. However, by studying its Dedekind-MacNeille completion DM(RS), one may reveal new important properties of rough set structures. Building upon D. Umadevi's work on describing joins and meets in DM(RS), we previously investigated pseudo-Kleene algebras defined on DM(RS) for reflexive relations. This paper delves deeper into the order-theoretic properties of DM(RS) in the context of reflexive relations. We describe the completely join-irreducible elements of DM(RS) and characterize when DM(RS) is a spatial completely distributive lattice. We show that even in the case of a non-transitive reflexive relation, DM(RS) can form a Nelson algebra, a property generally associated with quasiorders. We introduce a novel concept, the core of a relational neighborhood, and use it to provide a necessary and sufficient condition for DM(RS) to determine a Nelson algebra.

Randomized iterative algorithms, such as the randomized Kaczmarz method, have gained considerable popularity due to their efficacy in solving matrix-vector and matrix-matrix regression problems. Our present work leverages the insights gained from studying such algorithms to develop regression methods for tensors, which are the natural setting for many application problems, e.g., image deblurring. In particular, we extend the randomized Kaczmarz method to solve a tensor system of the form $\mathbf{\mathcal{A}}\mathcal{X} = \mathcal{B}$, where $\mathcal{X}$ can be factorized as $\mathcal{X} = \mathcal{U}\mathcal{V}$, and all products are calculated using the t-product. We develop variants of the randomized factorized Kaczmarz method for matrices that approximately solve tensor systems in both the consistent and inconsistent regimes. We provide theoretical guarantees of the exponential convergence rate of our algorithms, accompanied by illustrative numerical simulations. Furthermore, we situate our method within a broader context by linking our novel approaches to earlier randomized Kaczmarz methods.

The multi-modal perception methods are thriving in the autonomous driving field due to their better usage of complementary data from different sensors. Such methods depend on calibration and synchronization between sensors to get accurate environmental information. There have already been studies about space-alignment robustness in autonomous driving object detection process, however, the research for time-alignment is relatively few. As in reality experiments, LiDAR point clouds are more challenging for real-time data transfer, our study used historical frames of LiDAR to better align features when the LiDAR data lags exist. We designed a Timealign module to predict and combine LiDAR features with observation to tackle such time misalignment based on SOTA GraphBEV framework.

北京阿比特科技有限公司