亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We analyze the performance of large language models (LLMs) on Text Style Transfer (TST), specifically focusing on sentiment transfer and text detoxification across three languages: English, Hindi, and Bengali. Text Style Transfer involves modifying the linguistic style of a text while preserving its core content. We evaluate the capabilities of pre-trained LLMs using zero-shot and few-shot prompting as well as parameter-efficient finetuning on publicly available datasets. Our evaluation using automatic metrics, GPT-4 and human evaluations reveals that while some prompted LLMs perform well in English, their performance in on other languages (Hindi, Bengali) remains average. However, finetuning significantly improves results compared to zero-shot and few-shot prompting, making them comparable to previous state-of-the-art. This underscores the necessity of dedicated datasets and specialized models for effective TST.

相關內容

Differential privacy (DP) is applied when fine-tuning pre-trained large language models (LLMs) to limit leakage of training examples. While most DP research has focused on improving a model's privacy-utility tradeoff, some find that DP can be unfair to or biased against underrepresented groups. In this work, we show the impact of DP on bias in LLMs through empirical analysis. Differentially private training can increase the model bias against protected groups w.r.t AUC-based bias metrics. DP makes it more difficult for the model to differentiate between the positive and negative examples from the protected groups and other groups in the rest of the population. Our results also show that the impact of DP on bias is not only affected by the privacy protection level but also the underlying distribution of the dataset.

Custom diffusion models (CDMs) have attracted widespread attention due to their astonishing generative ability for personalized concepts. However, most existing CDMs unreasonably assume that personalized concepts are fixed and cannot change over time. Moreover, they heavily suffer from catastrophic forgetting and concept neglect on old personalized concepts when continually learning a series of new concepts. To address these challenges, we propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM), which can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner. Specifically, to surmount the catastrophic forgetting of old concepts, we develop a concept consolidation loss and an elastic weight aggregation module. They can explore task-specific and task-shared knowledge during training, and aggregate all low-rank weights of old concepts based on their contributions during inference. Moreover, in order to address concept neglect, we devise a context-controllable synthesis strategy that leverages expressive region features and noise estimation to control the contexts of generated images according to user conditions. Experiments validate that our CIDM surpasses existing custom diffusion models. The source codes are available at //github.com/JiahuaDong/CIFC.

Large Language Models (LLMs) suffer from hallucinations, referring to the non-factual information in generated content, despite their superior capacities across tasks. Meanwhile, knowledge editing has been developed as a new popular paradigm to correct the erroneous factual knowledge encoded in LLMs with the advantage of avoiding retraining from scratch. However, one common issue of existing evaluation datasets for knowledge editing is that they do not ensure LLMs actually generate hallucinated answers to the evaluation questions before editing. When LLMs are evaluated on such datasets after being edited by different techniques, it is hard to directly adopt the performance to assess the effectiveness of different knowledge editing methods in correcting hallucinations. Thus, the fundamental question remains insufficiently validated: Can knowledge editing really correct hallucinations in LLMs? We proposed HalluEditBench to holistically benchmark knowledge editing methods in correcting real-world hallucinations. First, we rigorously construct a massive hallucination dataset with 9 domains, 26 topics and more than 6,000 hallucinations. Then, we assess the performance of knowledge editing methods in a holistic way on five dimensions including Efficacy, Generalization, Portability, Locality, and Robustness. Through HalluEditBench, we have provided new insights into the potentials and limitations of different knowledge editing methods in correcting hallucinations, which could inspire future improvements and facilitate the progress in the field of knowledge editing.

As the use of large language models (LLMs) expands rapidly, so does the range of knowledge needed to supplement various LLM queries. Thus, enabling flexible and efficient injection of new knowledge in LLM inference is critical. Three high-level options exist: (i) embedding the knowledge in LLM's weights (i.e., fine-tuning), (ii) including the knowledge as a part of LLM's text input (i.e., in-context learning), or (iii) injecting the KV caches of the new knowledge to LLM during prefill. This paper argues that, although fine-tuning and in-context learning are popular, using KV caches as the medium of knowledge could simultaneously enable more modular management of knowledge injection and more efficient LLM serving with low cost and fast response. To realize these benefits, we envision a Knowledge Delivery Network (KDN), a new system component in LLM services that dynamically optimizes the storage, transfer, and composition of KV cache across LLM engines and other compute and storage resources. We believe that, just like content delivery networks (CDNs), such as Akamai, enabled the success of the Internet ecosystem through their efficient data delivery, KDNs will be critical to the success of LLM applications through their efficient knowledge delivery. We have open-sourced a KDN prototype at //github.com/LMCache/LMCache.

Large language models (LLMs) have achieved significant success in reasoning tasks, including mathematical reasoning and logical deduction. Among these reasoning tasks, graph problems stand out due to their complexity and unique structural characteristics, attracting considerable attention from researchers. Previous studies have explored LLMs' graph reasoning abilities through various techniques, such as different encoding methods for graph structures and the use of carefully designed prompts. However, a critical factor has been mostly overlooked: the prompt sequential order in which graph descriptions are presented to the models. In this study, we present the first comprehensive analysis of how the order of graph descriptions impacts LLM performance. Specifically, we comprehensively evaluate four graph description orders across six graph problems using six mainstream LLMs. The results reveal that: (1) ordered graph descriptions significantly improve LLMs' comprehension of graph structures; (2) the robustness of LLMs to graph description order varies across different tasks; and (3) the impact of graph order on performance is closely related to the inherent characteristics of tasks. This study provides a critical advancement in the application of LLMs for solving graph-related problems, paving the way for future research to optimize model performance through strategic graph description ordering.

Humans judge perceptual similarity according to diverse visual attributes, including scene layout, subject location, and camera pose. Existing vision models understand a wide range of semantic abstractions but improperly weigh these attributes and thus make inferences misaligned with human perception. While vision representations have previously benefited from alignment in contexts like image generation, the utility of perceptually aligned representations in more general-purpose settings remains unclear. Here, we investigate how aligning vision model representations to human perceptual judgments impacts their usability across diverse computer vision tasks. We finetune state-of-the-art models on human similarity judgments for image triplets and evaluate them across standard vision benchmarks. We find that aligning models to perceptual judgments yields representations that improve upon the original backbones across many downstream tasks, including counting, segmentation, depth estimation, instance retrieval, and retrieval-augmented generation. In addition, we find that performance is widely preserved on other tasks, including specialized out-of-distribution domains such as in medical imaging and 3D environment frames. Our results suggest that injecting an inductive bias about human perceptual knowledge into vision models can contribute to better representations.

Demographics and cultural background of annotators influence the labels they assign in text annotation -- for instance, an elderly woman might find it offensive to read a message addressed to a "bro", but a male teenager might find it appropriate. It is therefore important to acknowledge label variations to not under-represent members of a society. Two research directions developed out of this observation in the context of using large language models (LLM) for data annotations, namely (1) studying biases and inherent knowledge of LLMs and (2) injecting diversity in the output by manipulating the prompt with demographic information. We combine these two strands of research and ask the question to which demographics an LLM resorts to when no demographics is given. To answer this question, we evaluate which attributes of human annotators LLMs inherently mimic. Furthermore, we compare non-demographic conditioned prompts and placebo-conditioned prompts (e.g., "you are an annotator who lives in house number 5") to demographics-conditioned prompts ("You are a 45 year old man and an expert on politeness annotation. How do you rate {instance}"). We study these questions for politeness and offensiveness annotations on the POPQUORN data set, a corpus created in a controlled manner to investigate human label variations based on demographics which has not been used for LLM-based analyses so far. We observe notable influences related to gender, race, and age in demographic prompting, which contrasts with previous studies that found no such effects.

Large language models (LLMs) have made rapid improvement on medical benchmarks, but their unreliability remains a persistent challenge for safe real-world uses. To design for the use LLMs as a category, rather than for specific models, requires developing an understanding of shared strengths and weaknesses which appear across models. To address this challenge, we benchmark a range of top LLMs and identify consistent patterns across models. We test $16$ well-known LLMs on $874$ newly collected questions from Polish medical licensing exams. For each question, we score each model on the top-1 accuracy and the distribution of probabilities assigned. We then compare these results with factors such as question difficulty for humans, question length, and the scores of the other models. LLM accuracies were positively correlated pairwise ($0.39$ to $0.58$). Model performance was also correlated with human performance ($0.09$ to $0.13$), but negatively correlated to the difference between the question-level accuracy of top-scoring and bottom-scoring humans ($-0.09$ to $-0.14$). The top output probability and question length were positive and negative predictors of accuracy respectively (p$< 0.05$). The top scoring LLM, GPT-4o Turbo, scored $84\%$, with Claude Opus, Gemini 1.5 Pro and Llama 3/3.1 between $74\%$ and $79\%$. We found evidence of similarities between models in which questions they answer correctly, as well as similarities with human test takers. Larger models typically performed better, but differences in training, architecture, and data were also highly impactful. Model accuracy was positively correlated with confidence, but negatively correlated with question length. We find similar results with older models, and argue that these patterns are likely to persist across future models using similar training methods.

Large language models (LLMs) demonstrate great potential for problems with implicit graphical structures, while recent works seek to enhance the graph reasoning capabilities of LLMs through specialized instruction tuning. The resulting 'graph LLMs' are evaluated with in-distribution settings only, thus it remains underexplored whether LLMs are learning generalizable graph reasoning skills or merely memorizing patterns in the synthetic training data. To this end, we propose the NLGift benchmark, an evaluation suite of LLM graph reasoning generalization: whether LLMs could go beyond semantic, numeric, structural, reasoning patterns in the synthetic training data and improve utility on real-world graph-based tasks. Extensive experiments with two LLMs across four graph reasoning tasks demonstrate that while generalization on simple patterns (semantic, numeric) is somewhat satisfactory, LLMs struggle to generalize across reasoning and real-world patterns, casting doubt on the benefit of synthetic graph tuning for real-world tasks with underlying network structures. We explore three strategies to improve LLM graph reasoning generalization, and we find that while post-training alignment is most promising for real-world tasks, empowering LLM graph reasoning to go beyond pattern memorization remains an open research question.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

北京阿比特科技有限公司